## ANSWERS

## SBI 3C Microscope Calculations

1. Complete the following chart by calculating the missing lens or total magnification:

| Total magnification | Ocular (eyepiece) magnification | Lens magnification |
|---------------------|---------------------------------|--------------------|
| 80X                 | 5X                              | 16×                |
| 400X                | 10X                             | 40X                |
| 1000X               | 10X                             | 100X               |
| 500X                | 10X.                            | 50X                |

2. Calculate the diameter of the Field of View (FOV) on low power for each diagram which shows the lines of a ruler. Pretend the distance between all lines is 1.5 mm. Objects in the field of view are usually measured in micrometers (um) To convert, a field of view of 0.8mm, times it by 1000 to get 800um. 0.8mm x 1000 = 800 um.

A.







# of ruler spaces: 
$$2.5$$
 # of ruler spaces:  $10$  # of ruler spaces:  $6.5$ 

FOV =  $2.5$  mm FOV =  $10$  mm FOV =  $6.5$  mm  $1000$  um

$$FOV = \underline{6.5} \text{ mm}$$

$$\underline{6500} \text{ um}$$

3. A microscope has a LOW power objective with a magnification of 10X and a HIGH power objective with a magnification of 40X. If the LOW power field of view diameter is 4.3 mm, calculate the diameter of the HIGH power field of view, in millimeters and in micrometers. Remember:

diameter (LP) × magnification of LP objective = diameter (HP) magnification of HP objective

LP Mag = 10x. Lp Fov = 4.3mm. (4.3 x 10) HP Mag = 40x. HP Fov = ? (4.3 x 10)

Final answer in millimeters:  $\frac{1.08 \, \text{mm}}{1080 \, \mu \text{m}}$ .  $\frac{4.3 \times 100}{\text{Same}} = 1.08 \, \text{mr}$ . Final answer in micrometers:  $\frac{1080 \, \mu \text{m}}{\text{result}}$ .

for each would be 100x + 400x.