Population parameter - parameter základného súboru

Definition:

A population characteristics, such as population mean, population variance and population standard deviation.

Sample statistics - výberová štatistika

Definition:

A sample characteristics, such as sample mean, sample variance and sample standard deviation. The value of a sample statistics is used to estimate the value of the population parameter.

Central limit theorem - centrálna limitná teoréma

Definition:

A theorem that allows us to use the normal probability distribution to approximate the sampling distribution of a sample mean and sample standard deviation whenever the sample size is large.

Point estimate - bodový odhad

Definition:

Point estimate is a single numerical value used as an estimate of a population parameter.
Note:
Point estimator - sample statistics, such as $\bar{x}, s_{1}, s_{1}{ }^{2}$ that provides a point estimate of the population parameter. Point estimate is more precise than interval estimate but it is not so reliable.

Properties of point estimators - vlastnosti bodového odhadu

Definition:

Properties of point estimators are as follows:

- unbiasedness - a property of point estimator that occurs whenever the expected value of the point estimator is equal to the population parameter it estimates.
- consistency - a property of point estimator that occurs whenever larger sample sizes tend to provide point estimates closer to the population parameter.
- (relative) efficiency - if we have two unbiased point estimators of the same population parameter, the point estimator with the smaller variance is said to have greater efficiency than the other.

Point estimate of mean - bodový odhad priemeru (strednej hodnoty)

$$
\text { est } \mu=\bar{x}
$$

As for a point estimate, population mean (μ) can be estimated by means of a sample mean (\bar{x}). A sample mean can be calculated using a function AVERAGE in MS Excel.
Elaborated by: Ing. Martina Majorová, Dept. of Statistics and Operations Research, FEM SUA in Nitra Reference: JAISINGH, L.: Statistics for the Utterly Confused

Point estimate of variance - bodový odhad rozptylu
est $\sigma^{2}=s_{1}^{2}$
As for a point estimate, population variance (σ^{2}) can be estimated by means of a sample variance $\left(s_{l}{ }^{2}\right)$. A sample variance can be calculated using a function VAR in MS Excel.

Point estimate of standard deviation - bodový odhad smerodajnej (štandardnej) odchýlky est $\sigma=s_{1}$

As for a point estimate, population standard deviation (σ) can be estimated by means of a sample standard deviation $\left(s_{l}\right)$. A sample standard deviation can be calculated using a function STDEV in MS Excel.

Interval estimate - intervalový odhad

Definition:

Interval estimate is an estimate of population parameter that provides an interval believed to contain the value of the parameter. Interval estimate is not as precise as a point estimate but it is more reliable.

Confidence level - hladina spol'ahlivosti

Definition:

The confidence associated with an interval estimate (usually 0.95 or 0.99 , it depends on the significance level, i.e. alpha 0.05 or 0.01).

Confidence interval - interval spol'ahlivosti

Definition:

An interval estimate for an unknown population parameter.
The width of the confidence interval is related to the significance level, standard error, and n (number of observations) such that the following are true:

- the higher the percentage of accuracy (significance) desired, the wider the confidence interval
- the larger the standard error, the wider the confidence interval
- the larger the n, the smaller the standard error, and so the narrower the confidence interval
All other things being equal, a smaller confidence interval is always more desirable than a larger one because a smaller interval means the population parameter can be estimated more accurately.

Interval estimate of mean - intervalový odhad priemeru (strednej hodnoty)

$$
P(\bar{x}-\Delta<\mu<\bar{x}+\Delta)=1-\alpha
$$

where Δ is the sampling error.

- If the sample size is greater than $30(n>30)$ then the distribution of the random variable (sample statistic) will be approximated with a normal distribution $-\mathrm{N}(0,1)$. The sampling error will be calculated as follows:

$$
\Delta=u_{(1-\alpha / 2)} \cdot \frac{s_{1}}{\sqrt{n}} .
$$

A critical value $\left(u_{(1-\alpha / 2)}\right)$ will be calculated using a function NORMSINV in MS Excel.

- If the sample size is lower than $30(\mathrm{n}<30)$ then the distribution of the random variable (sample statistic) will be approximated with a Student t distribution). The sampling error will be calculated as follows:

$$
\Delta=t_{(\alpha ; n-1)} \cdot \frac{s_{1}}{\sqrt{n}} .
$$

A critical value $\left(t_{(\alpha ; n-1)}\right)$ will be calculated using a function TINV in MS Excel.

Interval estimate of variance - intervalový odhad rozptylu

$$
P\left(\frac{(n-1) \cdot s_{1}^{2}}{\chi(\alpha / 2 ; n-1)}<\sigma^{2}<\frac{(n-1) \cdot s_{1}^{2}}{\chi_{(1-\alpha / 2 ; n-1)}^{2}}\right)=1-\alpha
$$

Critical values for both lower and upper limits $\left(\chi_{(\alpha / 2 ; n-1)}^{2} ; \chi_{(1-\alpha / 2 ; n-1)}^{2}\right)$ can be calculated using a function CHIINV in MS Excel.

Interval estimate of standard deviation - intervalový odhad smerodajnej (štandardnej) odchýlky

$$
P\left(\sqrt{\frac{(n-1) \cdot s_{1}^{2}}{\chi_{(\alpha / 2 ; n-1)}^{2}}}<\sigma^{2}<\sqrt{\frac{(n-1) \cdot s_{1}^{2}}{\chi_{(1-\alpha / 2 ; n-1)}^{2}}}\right)=1-\alpha
$$

Critical values for both lower and upper limits $\left(\chi_{(\alpha / 2 ; n-1)}^{2} ; \chi_{(1-\alpha / 2 ; n-1)}^{2}\right)$ can be calculated using a function CHIINV in MS Excel.

Note: It's much faster to calculate the interval estimate for variance and then calculate the square root of both lower and upper limits .

Sampling error (standard error, estimation error) - prípustná chyba odhadu

$$
\Delta=u_{(1-\alpha / 2)} \cdot \frac{s_{1}}{\sqrt{n}} \quad \text { or } \quad \Delta=t_{(\alpha ; n-1)} \cdot \frac{s_{1}}{\sqrt{n}}
$$

The lower the desired sampling error the larger the sample size must be.
Note: Sampling error is influenced by:

- confidence level - we can influence the confidence level
- (sample) standard deviation - we can't influence the variability within the sample (chosen from the collected set of data)
- sample size - we can influence the sample size

Sample size - vel'kost' výberového súboru
$n=u_{(1-\alpha / 2)}^{2} \cdot \frac{s_{1}^{2}}{\Delta^{2}}$
where,
Δ and s_{1} are given in the text of the example.
A critical value $\left(u_{(1-\alpha / 2)}\right)$ will be calculated using a function NORMSINV in MS Excel.

