Population parameter – parameter základného súboru

Definition:

A population characteristics, such as population mean, population variance and population standard deviation.

Sample statistics – výberová štatistika

Definition:

A sample characteristics, such as sample mean, sample variance and sample standard deviation. The value of a sample statistics is used to estimate the value of the population parameter.

Central limit theorem – centrálna limitná teoréma

Definition:

A theorem that allows us to use the normal probability distribution to approximate the sampling distribution of a sample mean and sample standard deviation whenever the sample size is large.

Point estimate – bodový odhad

Definition:

Point estimate is a single numerical value used as an estimate of a population parameter.

Note:

Point estimator – sample statistics, such as \bar{x} , s_1 , s_1^2 that provides a point estimate of the population parameter. Point estimate is more precise than interval estimate but it is not so reliable.

Properties of point estimators – vlastnosti bodového odhadu

Definition:

Properties of point estimators are as follows:

- **unbiasedness** a property of point estimator that occurs whenever the expected value of the point estimator is equal to the population parameter it estimates.
- **consistency** a property of point estimator that occurs whenever larger sample sizes tend to provide point estimates closer to the population parameter.
- (relative) efficiency if we have two unbiased point estimators of the same population parameter, the point estimator with the smaller variance is said to have greater efficiency than the other.

Point estimate of mean – bodový odhad priemeru (strednej hodnoty)

est $\mu = \overline{x}$

As for a point estimate, population mean (μ) can be estimated by means of a sample mean (\bar{x}). A sample mean can be calculated using a function AVERAGE in MS Excel.

Elaborated by: Ing. Martina Majorová, Dept. of Statistics and Operations Research, FEM SUA in Nitra Reference: JAISINGH, L.: Statistics for the Utterly Confused

Point estimate of variance – bodový odhad rozptylu

est $\sigma^2 = s_1^2$

As for a point estimate, population variance (σ^2) can be estimated by means of a sample variance (s_1^2). A sample variance can be calculated using a function VAR in MS Excel.

Point estimate of standard deviation - bodový odhad smerodajnej (štandardnej) odchýlky

est $\sigma = s_1$

As for a point estimate, population standard deviation (σ) can be estimated by means of a sample standard deviation (s_I). A sample standard deviation can be calculated using a function STDEV in MS Excel.

Interval estimate – intervalový odhad

Definition:

Interval estimate is an estimate of population parameter that provides an interval believed to contain the value of the parameter. Interval estimate is not as precise as a point estimate but it is more reliable.

Confidence level – hladina spoľahlivosti

Definition:

The confidence associated with an interval estimate (usually 0.95 or 0.99, it depends on the significance level, i.e. alpha 0.05 or 0.01).

Confidence interval – interval spoľahlivosti

Definition:

An interval estimate for an unknown population parameter.

The width of the confidence interval is related to the significance level, standard error, and n (number of observations) such that the following are true:

- the higher the percentage of accuracy (significance) desired, the wider the confidence interval
- the larger the standard error, the wider the confidence interval
- the larger the n, the smaller the standard error, and so the narrower the confidence interval

All other things being equal, a smaller confidence interval is always more desirable than a larger one because a smaller interval means the population parameter can be estimated more accurately.

Elaborated by: Ing. Martina Majorová, Dept. of Statistics and Operations Research, FEM SUA in Nitra Reference: JAISINGH, L.: Statistics for the Utterly Confused

Interval estimate of mean - intervalový odhad priemeru (strednej hodnoty)

 $P(\overline{x} - \Delta < \mu < \overline{x} + \Delta) = 1 - \alpha$

where Δ is the sampling error.

• If the sample size is greater than 30 (n>30) then the distribution of the random variable (sample statistic) will be approximated with a normal distribution – N(0,1). The sampling error will be calculated as follows:

$$\Delta = u_{(1-\alpha/2)} \cdot \frac{s_1}{\sqrt{n}}.$$

A critical value $(u_{(1-\alpha/2)})$ will be calculated using a function NORMSINV in MS Excel.

• If the sample size is lower than 30 (n<30) then the distribution of the random variable (sample statistic) will be approximated with a Student t distribution). The sampling error will be calculated as follows:

$$\Delta = t_{(\alpha;n-1)} \cdot \frac{s_1}{\sqrt{n}} \, .$$

A critical value $(t_{(\alpha:n-1)})$ will be calculated using a function TINV in MS Excel.

Interval estimate of variance - intervalový odhad rozptylu

$$P\left(\frac{(n-1)\cdot s_1^2}{\chi^2_{(\alpha/2;n-1)}} < \sigma^2 < \frac{(n-1)\cdot s_1^2}{\chi^2_{(1-\alpha/2;n-1)}}\right) = 1 - \alpha$$

Critical values for both lower and upper limits $(\chi^2_{(\alpha/2;n-1)};\chi^2_{(1-\alpha/2;n-1)})$ can be calculated using a function CHIINV in MS Excel.

Interval estimate of standard deviation - intervalový odhad smerodajnej (štandardnej) odchýlky

$$P\left(\sqrt{\frac{(n-1)\cdot s_1^2}{\chi^2_{(\alpha/2;n-1)}}} < \sigma^2 < \sqrt{\frac{(n-1)\cdot s_1^2}{\chi^2_{(1-\alpha/2;n-1)}}}\right) = 1 - \alpha$$

Critical values for both lower and upper limits $(\chi^2_{(\alpha/2;n-1)};\chi^2_{(1-\alpha/2;n-1)})$ can be calculated using a function CHIINV in MS Excel.

Note: It's much faster to calculate the interval estimate for variance and then calculate the square root of both lower and upper limits \bigcirc .

Elaborated by: Ing. Martina Majorová, Dept. of Statistics and Operations Research, FEM SUA in Nitra Reference: JAISINGH, L.: Statistics for the Utterly Confused

Sampling error (standard error, estimation error) – prípustná chyba odhadu

$$\Delta = u_{(1-\alpha/2)} \cdot \frac{s_1}{\sqrt{n}}$$
 or $\Delta = t_{(\alpha;n-1)} \cdot \frac{s_1}{\sqrt{n}}$

The lower the desired sampling error the larger the sample size must be.

Note: Sampling error is influenced by:

- confidence level we can influence the confidence level
- (sample) standard deviation we can't influence the variability within the sample (chosen from the collected set of data)
- sample size we can influence the sample size

Sample size – veľkosť výberového súboru

$$n = u_{(1-\alpha/2)}^2 \cdot \frac{s_1^2}{\Delta^2}$$

where, Δ and s_1 are given in the text of the example.

A critical value $(u_{(1-\alpha/2)})$ will be calculated using a function NORMSINV in MS Excel.