Hypothesis testing - a cheat sheet

There are two main groups of hypothesis tests:

1. tests about mean
2. tests about variance (standard deviation)

1. Hypothesis tests about mean

How many mean values are present according to the text of the task?
a. one
b. two
c. more than two

1a. Hypothesis test about mean (one mean value)

- the test is called hypothesis test about a population mean
- we're interested if the population mean is equal to a specific value which is known (a constant)
- notation (H0): $\mu=\mu_{0}$
- if the population parameters are known $\left(\mu, \sigma^{2}, \sigma\right)$ we use the formula (1) to calculate the test statistic and the critical value is calculated using a function NORMSINV ($1-\alpha / 2$).

$$
\begin{equation*}
u=\frac{\bar{x}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}} \tag{1}
\end{equation*}
$$

- if the population parameters are not known, we have to use the sample statistics instead $\left(\bar{x}, s_{1}^{2}, s_{1}\right)$. Then we have to decide on the sample size. If the sample size > 30, we use the formula (2) to calculate the test statistic and the critical value is calculated using a function NORMSINV ($1-\alpha / 2$). If the sample size $<=30$, we use the formula (3) to calculate the test statistic and the critical value is calculated using a function $\operatorname{TINV}(\alpha ; n-1)$.

$$
\begin{aligned}
& u=\frac{\bar{x}-\mu_{0}}{\frac{s_{1}}{\sqrt{n}}} \quad \text { (2), we use a normal distribution } \\
& t=\frac{\bar{x}-\mu_{0}}{\frac{s_{1}}{\sqrt{n}}}
\end{aligned}
$$

1b. Hypothesis test about mean (two mean values)

The samples could be:
i independent
ii matched (dependent)

1bi. Hypothesis test about the difference between means of two populations

 (independent samples)- we're interested if the means are equal (with no difference) or not
- notation (H0): $\mu_{1}=\mu_{2}$
- if the population parameters are known (μ, σ^{2}, σ) we use the formula (4) to calculate the test statistic and the critical value is calculated using a function NORMSINV ($1-\alpha / 2$).

$$
\begin{equation*}
u=\frac{\mu_{1}-\mu_{2}}{\sqrt{\frac{n_{2} \sigma_{1}^{2}+n_{1} \sigma_{2}^{2}}{n_{1} \cdot n_{2}}}} \tag{4}
\end{equation*}
$$

- if the population parameters are not known, we have to use the sample statistics instead ($\bar{x}, s_{1}^{2}, s_{1}$). Then we have to decide on the sample size. If the sample size of BOTH samples is > 30 (i.e. n1 > 30 AND n2 > 30), we use the formula (5) to calculate the test statistic and the critical value is calculated using a function NORMSINV ($1-\alpha / 2$). If the sample size of at least one sample is $<=30$ (i.e. either $\mathrm{n} 1<=30$ OR n2 $<=30$), we use the formula (6) to calculate the test statistic and the critical value is calculated using a function $\operatorname{TINV}\left(\alpha ;\left(n_{1}+n_{2}-2\right)\right)$.
$u=\frac{\bar{x}_{1}-\bar{x}_{2}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{n_{2} s_{11}^{2}+n_{1} s_{12}^{2}}{n_{1} \cdot n_{2}}}}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{n_{2} s_{11}^{2}+n_{1} s_{12}^{2}}{n_{1} \cdot n_{2}}}}$ (5), we use a normal distribution

1bii. Hypothesis test about the difference between means of two populations (matched samples)

- we're interested if the means are equal (with no difference) or not
- notation (H0): $\mu_{d}=0$
- this test is almost always performed on small samples ($\mathrm{n}<=30$) so we'll not know the population parameters at all, we'll use the sample statistics instead
- to calculate the test statistic, we use the formula (7) and the critical value is calculated using a function $\operatorname{TINV}(\alpha ; n-1)$.
- the test can also be performed using Tools/Data Analysis/t-test: paired two sample for means

$$
t=\frac{\bar{d}}{\sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}-\bar{d}\right)^{2}}{n \cdot(n-1)}}} \text { (7), we use a Student } \mathrm{t} \text { distribution }
$$

1c. Hypothesis test about mean (more than two mean values)

- the test is called Analysis of variance (ANOVA)

