Data sampling \& sorting

$f_{i}=\frac{n_{i}}{n} \cdot 100[\%]$
$N_{1}=n_{1} ; N_{2}=N_{1}+n_{2} ; N_{3}=N_{2}+n_{3} ; \ldots \quad$ cumulative (absolute) frequency
$F_{1}=f_{1} ; F_{2}=F_{1}+f_{2} ; F_{3}=F_{2}+f_{3} ; \ldots \quad$ cumulative relative frequency
$h=\frac{(\max -\min)}{m}$
$m=\sqrt{n}$
relative frequency
width of interval (class); grouped frequency distribution
number of intervals (classes); grouped frequency distribution

Descriptive statistics

$\mu=\frac{\sum x_{i}}{N}($ simple $)$ or $\mu=\frac{\sum x_{i} \cdot n_{i}}{N}$ (weighted) population mean
$\bar{x}=\frac{\sum x_{i}}{n}($ simple $)$ or $\bar{x}=\frac{\sum x_{i} \cdot n_{i}}{n}($ weighted $) \quad$ sample mean
$\mathrm{IQR}=\mathrm{Q} 3-\mathrm{Q} 1$
interquartile range
$R=\max -\min$
range
$\sigma^{2}=\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}$ (simple) or
$\sigma^{2}=\frac{\sum\left(x_{i}-\mu\right)^{2} \cdot n_{i}}{N}$ (weighted)
$s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}($ simple $)$ or
$s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2} \cdot n_{i}}{n-1}$ (weighted)
$\sigma=\sqrt{\sigma^{2}}$
sample variance
population standard deviation
$s=\sqrt{s^{2}}$
$C V_{s}=\frac{s}{\bar{x}} \cdot 100[\%]$
$\gamma_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)^{3}}{s^{3} \cdot n}($ simple $)$ or
$\gamma_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)^{3} \cdot n_{i}}{s^{3} \cdot n}$ (weighted)
$\gamma_{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{4}}{s^{4} \cdot n}-3$ (simple) or
$\gamma_{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{4} \cdot n_{i}}{s^{4} \cdot n}-3($ weighted $)$

Theory of probability

no formulas

Point and interval estimate

est $\mu=\bar{x}$
est $\sigma^{2}=s_{1}^{2}$
est $\sigma=s_{1}$
$P(\bar{x}-\Delta<\mu<\bar{x}+\Delta)=1-\alpha$
$\Delta=u_{(1-\alpha / 2)} \cdot \frac{s_{1}}{\sqrt{n}}$
$\Delta=t_{(\alpha ; n-1)} \cdot \frac{s_{1}}{\sqrt{n}}$
$P\left(\frac{(n-1) \cdot s_{1}^{2}}{\chi_{(\alpha / 2 ; n-1)}^{2}}<\sigma^{2}<\frac{(n-1) \cdot s_{1}^{2}}{\chi_{(1-\alpha / 2 ; n-1)}^{2}}\right)=1-\alpha$
$P\left(\sqrt{\frac{(n-1) \cdot s_{1}^{2}}{\chi_{(\alpha / 2 ; n-1)}^{2}}}<\sigma^{2}<\sqrt{\frac{(n-1) \cdot s_{1}^{2}}{\chi_{(1-\alpha / 2 ; n-1)}^{2}}}\right)=1-\alpha \quad$ interval estimate of standard deviation
$n=u_{(1-\alpha / 2)}^{2} \cdot \frac{s_{1}^{2}}{\Delta^{2}}$
sample size

Hypothesis testing (tests for mean)

$$
u=\frac{\bar{x}-\mu_{0}}{\frac{s_{1}}{\sqrt{n}}}
$$

$$
t=\frac{\bar{x}-\mu_{0}}{\frac{s_{1}}{\sqrt{n}}}
$$

$$
u=\frac{\bar{x}_{1}-\bar{x}_{2}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{n_{2} s_{11}^{2}+n_{1} s_{12}^{2}}{n_{1} \cdot n_{2}}}}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{n_{2} s_{11}^{2}+n_{1} s_{12}^{2}}{n_{1} \cdot n_{2}}}}
$$

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{\left(n_{1}-1\right) s_{11}^{2}+\left(n_{2}-1\right) s_{12}^{2}}{n_{1}+n_{2}-2}}} \cdot \sqrt{\frac{n_{1} \cdot n_{2}}{n_{1}+n_{2}}}
$$

$$
t=\frac{\bar{d}}{\sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}-\bar{d}\right)^{2}}{n \cdot(n-1)}}}
$$

hypothesis test about a population mean if $n>30$
hypothesis test about a population mean if $n<=30$
hypothesis test about the difference between means of two populations (independent samples) if $n>30$
hypothesis test about the difference between means of two populations (independent samples) if $\mathrm{n}<=30$
hypothesis test about the difference between means of two populations (matched samples)

