Hypothesis test about a population variance - test zhody rozptylu so známou konštantou

$$
\chi^{2}=\frac{(n-1) \cdot s_{1}^{2}}{\sigma_{0}^{2}} \quad \text { we use a } \chi^{2} \text { (Chi-square; read as „kai") distribution }
$$

σ_{0}^{2} denotes the specific numerical value (a constant) being considered in the null and alternate hypotheses.

Solution to hypothesis testing:

- if the test statistic lies the interval comprised of the lower and upper limit (two critical values), then the null hypothesis cannot be rejected
- if the test statistic is greater than the upper limit or smaller than the lower limit of the interval, then the null hypothesis is rejected and the alternate hypothesis is accepted

Hypothesis test about the variances of two populations - test zhody dvoch rozptylov

$$
F=\frac{s_{11}^{2}}{s_{12}^{2}}
$$

we use a Fisher (F) distribution

Note: it is always specified as one-tailed test and so the numerator of the ratio $\left(s_{11}{ }^{2}\right)$ should be greater than the denominator of the ration $\left(s_{12}{ }^{2}\right)$, i.e. denote the population providing largest sample variance as population 1 .

Note: if the data set is present, i.e. you do not have only the sample statistics, you can compute the F-test: Two Sample for variances using Tools/Data Analysis (variable 1 and 2 range should be the same as population 1 and 2 according to the values of sample variances, see above).

After we find a conclusion to this test and at least one of the sample sizes is smaller than 30, we have to continue in hypothesis testing, as follows:

- if the null hypothesis cannot be rejected, i.e. the variances of two populations are equal, than we compute the t-test: Two-sample assuming equal variances
$t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{\left(n_{1}-1\right) s_{11}^{2}+\left(n_{2}-1\right) s_{12}^{2}}{n_{1}+n_{2}-2}}} \cdot \sqrt{\frac{n_{1} \cdot n_{2}}{n_{1}+n_{2}}}$
- if the null hypothesis is rejected, i.e. the variances of two populations are not equal, than we compute the t-test: Two-sample assuming unequal variances (Behrens-Fisher test)

