Data sampling \& sorting

$f_{i}=\frac{n_{i}}{n} \cdot 100[\%]$
$N_{1}=n_{1} ; N_{2}=N_{1}+n_{2} ; N_{3}=N_{2}+n_{3} ; \ldots$
$F_{1}=f_{1} ; F_{2}=F_{1}+f_{2} ; F_{3}=F_{2}+f_{3} ; \ldots$
$h=\frac{(\max -\min)}{m}$
$m=\sqrt{n}$

Descriptive statistics

$\mu=\frac{\sum x_{i}}{N}$ or $\mu=\frac{\sum x_{i} \cdot n_{i}}{N}$
$\bar{x}=\frac{\sum x_{i}}{n}$ or $\bar{x}=\frac{\sum x_{i} \cdot n_{i}}{n}$
$\mathrm{IQR}=\mathrm{Q} 3-\mathrm{Q} 1$
$R=\max -\min$
$\sigma^{2}=\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}$ or $\sigma^{2}=\frac{\sum\left(x_{i}-\mu\right)^{2} \cdot n_{i}}{N}$
$s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}$ or $s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2} \cdot n_{i}}{n-1}$
$\sigma=\sqrt{\sigma^{2}}$
$s=\sqrt{s^{2}}$
$C V_{s}=\frac{s}{\bar{x}} \cdot 100[\%]$
$\gamma_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)^{3}}{s^{3} \cdot n}$ or $\gamma_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)^{3} \cdot n_{i}}{s^{3} \cdot n}$
$\gamma_{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{4}}{s^{4} \cdot n}-3$ or $\gamma_{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{4} \cdot n_{i}}{s^{4} \cdot n}-3$

Theory of probability

no formulas

Point and interval estimate

est $\mu=\bar{x}$
est $\sigma^{2}=s_{1}^{2}$
est $\sigma=s_{1}$
$P(\bar{x}-\Delta<\mu<\bar{x}+\Delta)=1-\alpha$
$\Delta=u_{(1-\alpha / 2)} \cdot \frac{s_{1}}{\sqrt{n}}$
$\Delta=t_{(\alpha ; n-1)} \cdot \frac{s_{1}}{\sqrt{n}}$
$P\left(\frac{(n-1) \cdot s_{1}^{2}}{\chi_{(\alpha / 2 ; n-1)}^{2}}<\sigma^{2}<\frac{(n-1) \cdot s_{1}^{2}}{\chi_{(1-\alpha / 2 ; n-1)}^{2}}\right)=1-\alpha$
$P\left(\sqrt{\frac{(n-1) \cdot s_{1}^{2}}{\chi_{(\alpha / 2 ; n-1)}^{2}}}<\sigma^{2}<\sqrt{\frac{(n-1) \cdot s_{1}^{2}}{\chi_{(1-\alpha / 2 ; n-1)}^{2}}}\right)=1-\alpha$
$n=u_{(1-\alpha / 2)}^{2} \cdot \frac{s_{1}^{2}}{\Delta^{2}}$

Hypothesis testing (tests for mean)

$u=\frac{\bar{x}-\mu_{0}}{\frac{s_{1}}{\sqrt{n}}}$
$t=\frac{\bar{x}-\mu_{0}}{\frac{s_{1}}{\sqrt{n}}}$
Elaborated by: Ing. Martina Majorová, Dept. of Statistics and Operations Research, FEM SUA in Nitra

$$
\begin{aligned}
& u=\frac{\bar{x}_{1}-\bar{x}_{2}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{n_{2} s_{11}^{2}+n_{1} s_{12}^{2}}{n_{1} \cdot n_{2}}}}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{n_{2} s_{11}^{2}+n_{1} s_{12}^{2}}{n_{1} \cdot n_{2}}}} \\
& t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{\left(n_{1}-1\right) s_{11}^{2}+\left(n_{2}-1\right) s_{12}^{2}}{n_{1}+n_{2}-2}}} \cdot \sqrt{\frac{n_{1} \cdot n_{2}}{n_{1}+n_{2}}} \\
& t=\frac{\bar{d}}{\sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}-\bar{d}\right)^{2}}{n \cdot(n-1)}}}
\end{aligned}
$$

Hypothesis testing (tests for variance)

$\chi^{2}=\frac{(n-1) \cdot s_{1}^{2}}{\sigma_{0}^{2}}$

$$
F=\frac{s_{11}^{2}}{s_{12}^{2}}
$$

Analysis of variance (ANOVA)

no formulas

Chi-square test for independence

$$
\begin{aligned}
& \chi^{2}(\alpha ;(\mathrm{m}-1) \cdot(k-1))=\sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{k}} \frac{\left(\left(\mathrm{a}_{\mathrm{i}} b_{j}\right)-\left(\mathrm{a}_{\mathrm{i}} b_{j}\right)_{0}\right)^{2}}{\left(\mathrm{a}_{\mathrm{i}} b_{j}\right)_{0}} \\
& \chi^{2}(\alpha ;(\mathrm{m}-1) \cdot(k-1))=\sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{k}} \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}} \\
& \left(a_{i} b_{j}\right)_{0}=\frac{a_{i} \cdot b_{j}}{n}
\end{aligned}
$$

$$
V=\sqrt{\frac{\chi^{2}}{n(\min ((m, k)-1)}}
$$

$$
C=\sqrt{\frac{\chi^{2}}{n+\chi^{2}}}
$$

$$
T^{2}=\frac{\chi^{2}}{n(\sqrt{(m-1)(k-1)}}
$$

Regression and correlation analysis

$$
t_{(\alpha ; n-2)}=\frac{r}{\sqrt{\frac{1-r^{2}}{n-2}}}
$$

