Calculating Kinetic Energy

The kinetic energy of a moving object depends on its mass (how heavy it is) and its velocity (how fast it is going).

$$
\text { Kinetic energy }=\frac{1}{2} \times \text { mass } \times \text { velocity } \times \text { velocity }
$$

OR

$$
E_{k}=\frac{1}{2} m v^{2}
$$

The mass must be in kilograms (kg) and the velocity must be in metres per second $\left(\mathrm{ms}^{-1}\right)$ for the energy to be calculated in Joules.

Example:

Find the kinetic energy of a 12 kg dog running at $4 \mathrm{~m} \mathrm{~s}^{-1}$.
$\mathrm{m}=12 \mathrm{~kg}$
Ek $=1 / 2 m v^{2}$
$\mathrm{v}=4 \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{E}_{\mathrm{k}}=$?

$$
\begin{aligned}
& =1 / 2 \times 12 \times\left(4^{2}\right) \\
& =6 \times 16 \\
& =96 \mathrm{~J}
\end{aligned}
$$

Find the kinetic energy of the following objects.

1. A 25 kg boy walking at $1 \mathrm{~m} \mathrm{~s}^{-1}$.
2. A 25 kg boy running at $3 \mathrm{~m} \mathrm{~s}^{-1}$.
3. A 75 kg man walking at $1.5 \mathrm{~m} \mathrm{~s}^{-1}$.
4. A 75 kg man on a 12 kg bike who is riding at $8 \mathrm{~m} \mathrm{~s}^{-1}$.
5. A 0.003 kg bullet shot at $120 \mathrm{~m} \mathrm{~s}^{-1}$.

