	Kinetic		Weight x Height (P.E. 2 Mass x Velocity ² (K.E Energy = joules Weight = newtons Height = meters Mass = kilograms Velocity = m/s	
s th	a closed system, the s ne potential energy o e the following proble	ecreases, the	tential energy and the	e kinetic energy is a consta uses.
1.	What is the potentic of a hill 300 meters h		rock that weighs 100 r	newtons that is sitting on to
_		- Carrier	(3 %	Answer:
2.	of 3 m/s?	nergy of a bio	cycle with a mass of 14	4 kg traveling at a velocity Answer:
3.			is sitting on a windows tential or kinetic? Hov	ill 30 meters from the grour v many joules is this?
			Answer	5:
4.	When the flower por potential energy?	in Problem 3	is only 10 meters from	the ground, what is its
				Answer:
5.	How much of the to energy?	tal energy in	Problems 3 and 4 has I	peen tränsformed to kinetid
				Answer:
6.	A 1200 kg automobi kinetic? How much			/s. Is its energy potential o

CALCULAT	ING	WORK

Work has a special meaning in science. It is the product of the force applied to an object and the distance the object moves. The unit of work is the Joule (J).

W = Force x Distance	
W = Fxd	Force = newtons
	Distance = meter

1. A book weighing 1.0 newton is lifted 2 meters. How much work was done?

Solve the following problems.

		particular and the second
	70	Answer:
2.	A force of 15 newtons is used to	o push a box along the floor a distance of 3 meters.

	now much work was done?		
	2.12	Answer:	
3.	It took 50 joules to push a chair 5 mete	ers across the floor. With what force was the	Э

	Answer:
A force of 100 newtons was necessed done. How far was the rock lifted?	ary to lift a rock. A total of 150 joules of work wa

5. It took 500 newtons of force to push a car 4 meters. How much work was done?

6. A young man exerted a force of 9,000 newtons on a stalled car but was unable to move it. How much work was done?

Physical Science IF8767

Answer:

Answer:

Name Mana Michael

©Instructional Fair, Inc.

Physical Science IF8767