



## Stage 3

## WACE Examination 2011

**Marking Key** 

Marking keys are an explicit statement about what the examiner expects of candidates when they respond to a question. They are essential to fair assessment because their proper construction underpins reliability and validity.

When examiners design an examination, they develop provisional marking keys that can be reviewed at a marking key ratification meeting and modified as necessary in the light of candidate responses.

## Section One: Multiple-choice

| (20 | Marks) |
|-----|--------|
|-----|--------|

MARKING KEY

| Question | Answer |
|----------|--------|
| 1        | а      |
| 2        | С      |
| 3        | d      |
| 4        | b      |
| 5        | С      |
| 6        | С      |
| 7        | а      |
| 8        | b      |
| 9        | b      |
| 10       | d      |
| 11       | b      |
| 12       | а      |
| 13       | b      |
| 14       | а      |
| 15       | С      |
| 16       | а      |
| 17       | d      |
| 18       | С      |
| 19       | b      |
| 20       | d      |

### Section Two: Short answer

### **Question 21**

(a) Complete the table below, describing key differences between how the nervous and endocrine systems control homeostasis in the body. (4 marks)

| Description     |                        | Marks                  |                |
|-----------------|------------------------|------------------------|----------------|
| Function        | Nervous                | Endocrine              |                |
| Speed           | Fast/ milliseconds for | Slower/ depends on     |                |
| (reaction time) | an impulse             | distance to target     |                |
|                 |                        | organ/ depends on rate |                |
|                 |                        | of blood circulation/  | 1 mark per box |
|                 |                        | hours or weeks         | -              |
| Transmission    | Electrochemical/ along | Chemical transmission/ |                |
|                 | nerve fibres/neuron    | through the            |                |
|                 |                        | bloodstream/hormone    |                |
|                 |                        |                        | Total 4        |

The following parts of the question refer to the diagrams below, which represents different nervous pathways.

| For copyright reasons these images cannot be reproduced |
|---------------------------------------------------------|
| in the online version of this document                  |
| but may be viewed at                                    |
| www.muscletitans.com.                                   |
| www.ifoundthecure.com.                                  |
|                                                         |

i.....j

(b) Which diagram represents a somatic nervous pathway?

(1 mark)

| Description   | Marks   |
|---------------|---------|
| A/top diagram | 1       |
|               | Total 1 |

(c) What would be found in the region labelled ganglion on diagram B? (1 mark)

| Description                                           | Marks   |
|-------------------------------------------------------|---------|
| (A group of nerve) cell bodies/ synapse/ axon endings | 1       |
|                                                       | Total 1 |

## (d) Other than what is shown in the diagrams, describe **one (1)** structural or chemical characteristic that would differ between the nervous pathways A and B. (2 marks)

| Description                                                         | Marks   |
|---------------------------------------------------------------------|---------|
| One mark for characteristics, one mark for description              |         |
| One mark for each pathway, if only one mentioned can only get       |         |
| one mark, second point must match the first for two marks           |         |
| NB: Functional not accepted                                         |         |
| A is a myelinated nerve fibre - B is myelinated before the ganglion |         |
| but not after                                                       | 1–2     |
| A has the neurotransmitter acetylcholine - B has the                |         |
| neurotransmitter acetylcholine or noradrenaline                     |         |
| A has one set of nerve fibres - B has two sets/ parasympathetic     |         |
| and sympathetic fibres                                              |         |
|                                                                     |         |
|                                                                     | Total 2 |

(8 marks)

**Question 22** 

## (12 marks)

(a) Name the type of inheritance that controls skin colour in humans. (1 mark)

| Description | ו Marks |
|-------------|---------|
| Polygenic   | 1       |
|             | Total 1 |

(b) Explain how this type of inheritance results in the large variation in skin colour evident in human populations. (3 marks)

| Description                                                                           | Marks   |
|---------------------------------------------------------------------------------------|---------|
| Dependent on many (pairs) of genes/ not just a single pair like monogenic inheritance | 1       |
| Any two of:                                                                           |         |
| (Alleles) are still dominant/recessive to one another                                 |         |
| (Each allele) locus has a small effect                                                | 1–2     |
| (Each allele) locus has an equal effect                                               |         |
| (Each allele) adds/contributes/interacts to overall effect                            |         |
|                                                                                       | Total 3 |

(c) As well as genetic factors, the environment can affect skin colour greatly. What is found in skin that controls how light or dark the skin will be due to the effect of the environment? (1 mark)

| Description                       | Marks   |
|-----------------------------------|---------|
| Melanocytes/ melanosomes/ melanin | 1       |
|                                   | Total 1 |

(d) Explain why a person living nearer the equator could have darker skin than a person living nearer the North Pole, even though they have the same genetic code for skin colour. (3 marks)

| Description                                                                                                                                                                    | Marks   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Any three of:                                                                                                                                                                  |         |
| Greater amount of UV at equator/ Lesser amount of UV at the North Pole                                                                                                         |         |
| Greater exposure to UV results in more melanin or melanocytes or<br>melanosomes production/ less exposure to UV then less melanin<br>or melanocytes or melanosomes is produced | 1 2     |
| Increased melanin or melanocytes or melanosomes (causes a darker skin appearance)/decreased melanin or melanocytes or melanosomes (causes lighter skin appearance)             | 1–3     |
| Genes reach full potential of expression / genes don't reach full potential of expression                                                                                      |         |
|                                                                                                                                                                                | Total 3 |

4

Structural genes, such as those that control skin colour, code for the manufacture of particular proteins. Other types of genes can influence the production of proteins and, as such, the expression of the structural genes.

- (e) Describe the role of the following genes in the expression of structural genes.
  - (i) Regulator gene

(2 marks)

| Description                                                   | Marks   |
|---------------------------------------------------------------|---------|
| Any two of:                                                   |         |
| Regulator gene controls/stops the expression of one or more   |         |
| genes                                                         |         |
| Regulator genes produce repressor proteins                    |         |
| Repressor proteins bind to an operator gene                   |         |
| Regulator genes also code for activator proteins              | 1–2     |
| Regulator gene produces a special enzyme called an inducer    |         |
| Inducer has the role of 'switching on' other genes/allow gene |         |
| expression                                                    |         |
| Inhibits transcription/block RNA polymerase                   |         |
| RNA polymerase can't bind to promoter gene                    |         |
|                                                               | Total 2 |

### (ii) Promoter gene

(2 marks)

| Description                                                          | Marks   |
|----------------------------------------------------------------------|---------|
| Any two of:                                                          |         |
| A promoter gene:                                                     |         |
| is the site for the binding of RNA polymerase to DNA.                |         |
| starts the transcription process/transcription of mRNA in structural | 1–2     |
| genes                                                                |         |
| determines how much of a protein/which protein is made/increased     |         |
| protein production                                                   |         |
|                                                                      | Total 2 |

## **Question 23**

# (11 marks)

(a) Complete the table below

|                                                            | Description                                                                                                                                                                             |                           | Marks   |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------|
| One mark per box                                           |                                                                                                                                                                                         |                           |         |
|                                                            | For copyright reasons these images cannot be<br>reproduced in the online version of this document but<br>may be viewed at http://ovrt.nist.gov/projects/vrml/h-<br>anim/jointInfo.html. |                           |         |
|                                                            | Located at the shoulder                                                                                                                                                                 | Located in the lower arm  | 1-4     |
| Name the type of joint                                     | Ball and socket                                                                                                                                                                         | Pivot                     |         |
| NB: not synovial or fi                                     | reely moveable joints                                                                                                                                                                   |                           |         |
| Describe the type/s<br>of movement<br>created at the joint | Rotation/flexion and<br>extension/adduction<br>and abduction/radial<br>movement in any<br>direction/circumduction<br>(only 1 required)                                                  | Rotation (around an axis) |         |
|                                                            |                                                                                                                                                                                         |                           | Total 4 |

Part (b) of this question refers to the diagram below, which shows the bones and muscles of the arm.



(b) (i) Provide the name given to the point where the muscle is attached to the bone, as indicated by the letter S. (1 mark)

| Description | Marks   |
|-------------|---------|
| Insertion   | 1       |
|             | Total 1 |

(ii) Assuming that bone Q remains stationary, what will the muscles P and R do when bone T moves in the direction shown in the diagram? (2 marks)

| Description                    | Marks   |
|--------------------------------|---------|
| Muscle P will relax/lengthen   | 1       |
| Muscle R will contract/shorten | 1       |
|                                | Total 2 |

(c) Bionic limbs and artificial joints are medical technologies that can be used to treat different medical issues.

Distinguish between a bionic limb and an artificial joint and outline a medical issue for which each is used. (4 marks)

|                  | Description                                                                                                         |                                                                | Marks   |
|------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------|
| 1 mark per box   | (                                                                                                                   |                                                                |         |
|                  | Bionic Limb                                                                                                         | Artificial Joint                                               |         |
| What is it?      | Artificial replacement of<br>the arm/leg/limb                                                                       | Replace a joint inside a limb                                  |         |
| Medical<br>Issue | Patients with damage to<br>the entire limb/ crush<br>injuries/ amputated limb<br>replacement/ congenital<br>defects | Osteoarthritis/ severe<br>bone fractures in<br>joint/arthritis | 1–4     |
|                  |                                                                                                                     |                                                                | Total 4 |

One of the major risk factors in cardiovascular disease is hypertension (high blood pressure). It has been controlled by the use of various drugs and by the maintenance of a healthy lifestyle. A method of prevention has now been trialled using a new drug called CYT006-AngQb. A clinical trial was carried out with 72 patients suffering from hypertension. Half of the patients were injected with 300µg of the new drug and half were injected with 300µg of a placebo. Three months after the injection, the blood pressure of the patients was taken over a 24-hour period, from 8am one day to 8am the next day.

7

Below is a table comparing the average systolic blood pressure for both groups of patients over the 24-hour period.

|                  | Systolic Blood Pressure (mmHg)     |                                      |  |
|------------------|------------------------------------|--------------------------------------|--|
| Time (24 hours)  | Patients treated with the new drug | Patients treated with the<br>placebo |  |
| 8 am             | 145                                | 160                                  |  |
| 12pm (midday)    | 138                                | 150                                  |  |
| 4pm              | 142                                | 150                                  |  |
| 8pm              | 140                                | 150                                  |  |
| 12 am (midnight) | 125                                | 130                                  |  |
| 4am              | 132                                | 135                                  |  |
| 8am              | 140                                | 160                                  |  |

(a) Suggest a hypothesis for this experiment.

| Description                                                | Marks   |
|------------------------------------------------------------|---------|
| Any one of:                                                |         |
| CYT006-AngQb/the new drug reduces blood pressure           |         |
| CYT006-AngQb/the new drug causes the greatest reduction in | 1       |
| blood pressure in the early morning.                       | I       |
| Any statement that includes directional change between     |         |
| independent variable and dependent variable.               |         |
|                                                            | Total 1 |

### (b) Describe **two (2)** variables that were controlled in the experiment.

(2 marks)

| Description                                                       | Marks   |
|-------------------------------------------------------------------|---------|
| Answer must be from data in question                              |         |
| Any two of:                                                       |         |
| Same administration of the drug                                   |         |
| Amount of drug and placebo injected/ 300µg of drug and placebo    |         |
| injected                                                          |         |
| Equal number of patients in each group/ 36 patients in each group | 1–2     |
| The same amount of time from injection to measurement of blood    |         |
| pressure/same time of administration                              |         |
| Period of time over which blood pressure was measured/ blood      |         |
| pressure was measured over 24 hours                               |         |
| All patients suffering hypertension                               |         |
|                                                                   | Total 2 |

(1 mark)

(c) What is the purpose of a placebo?

| Description                                               | Marks   |
|-----------------------------------------------------------|---------|
| Either                                                    |         |
| Acts as a control/comparison with the experimental        |         |
| variable.                                                 | 1       |
| or                                                        |         |
| Patients unaware of which injection they have so there is |         |
| equal psychological effect in both groups                 |         |
|                                                           | Total 1 |

(d) Graph the results in the table on the grid provided below. You may use pencil.

(5 marks)



| Effect of CYT006 - AngQB on systolic B.P of patients (compared | d with a |
|----------------------------------------------------------------|----------|
| placebo over a 24 hour time period)                            |          |

| Description                                                       | Marks   |
|-------------------------------------------------------------------|---------|
| Maximum of 3 marks for a bar graph                                |         |
| Correctly constructs axes using appropriate scale (BP on Y axis,  | 1       |
| Time on X axis)                                                   |         |
| Correctly plots points and joins points to form a line (ruler)    | 1       |
| Labelling of axes with correct name and unit                      | 1       |
| Identifies lines using key/labels                                 | 1       |
| Title appropriate with both variables included and the two groups | 1       |
| (experimental and control)                                        |         |
|                                                                   | Total 5 |

(1 mark)

**MARKING KEY** 

| (e) | (i) | At which time of the day was the new drug most effective? | (1 mark) |
|-----|-----|-----------------------------------------------------------|----------|
|     |     |                                                           |          |

9

| Description                                                               | Marks   |
|---------------------------------------------------------------------------|---------|
| 8 am (does not matter if they say 1 <sup>st</sup> or 2 <sup>nd</sup> 8am) | 1       |
|                                                                           | Total 1 |

(ii) At which time of the day was the new drug least effective? (1 mark)

| Description | Marks   |
|-------------|---------|
| 4 am        | 1       |
|             | Total 1 |

(iii) Suggest a reason for the difference between (e) (i) and (ii)? (1 mark)

| Description                                     | Marks   |
|-------------------------------------------------|---------|
| Sleeping/less active at 4am/ more active at 8am | 1       |
|                                                 | Total 1 |

(f) If a person has normal blood pressure, homeostatic mechanisms are preventing it from reaching levels that are too high. The process is controlled by centres in the medulla oblongata that receive nerve impulses from baroreceptors in some arteries.

Explain how centres in the medulla oblongata work to prevent hypertension. (3 marks)

| Description                                                  | Marks   |
|--------------------------------------------------------------|---------|
| Any three of:                                                |         |
| Inhibits sympathetic impulses/decreases noradrenaline        |         |
| Causes vasodilation of blood vessels/ increase veno dilation |         |
| Increases parasympathetic impulses/increases acetylcholine   | 1–3     |
| Decreases heart rate/cardiac output                          |         |
| Decreases blood pressure                                     |         |
| Decreases renal output                                       |         |
|                                                              | Total 3 |

### **Question 25**

## (7 marks)

Thomas underwent a series of medical tests and was found to have low calcium ion levels in his blood due to a hormonal imbalance.

(a) Which hormone would normally increase in the blood when blood calcium ion levels are low? (1 mark)

| Description                       | Marks   |
|-----------------------------------|---------|
| Parathyroid hormone/ parathormone | 1       |
|                                   | Total 1 |

(b) For the hormone described in part (a), there are several effectors in the body, one of which is bone. Identify **one (1)** other effector in the body and describe the response of that tissue and/or organ to low blood calcium ion levels. (2 marks)

| Description                                                               | Marks   |
|---------------------------------------------------------------------------|---------|
| Any example for 2 marks (1 for identity and 1 for response)               |         |
| Small intestine - Increasing the absorption of calcium from digested food | 1–2     |
| Kidneys/ nephron - Increasing calcium reabsorption                        |         |
|                                                                           | Total 2 |

(c) Describe how low blood calcium ion levels could affect Thomas's bone composition and muscle contraction. What problem could result from these changes? (4 marks)

| Description                                       |                                                                                                                     |                                                                                                                                                  | Marks   |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1 mark per box                                    |                                                                                                                     |                                                                                                                                                  |         |
|                                                   | Bone Composition                                                                                                    | Muscle Contraction                                                                                                                               |         |
| Changes<br>caused by low<br>calcium ion<br>levels | Causes calcium<br>decreasing/leaching<br>from the bones/<br>stimulates the action<br>of PTH                         | Prevents attachment of<br>myosin to<br>actin/crossbridges/change<br>in shape of myosin/for<br>neurotransmission at the<br>neuromuscular junction | 1–4     |
| Problems<br>resulting from<br>the changes         | Osteoporosis/<br>decreased bone<br>density/ increase<br>likelihood of fractures/<br>bone fragility/brittle<br>bones | Muscle spasms/ inability<br>to contract/ muscle<br>rigidity/muscle cramp                                                                         |         |
|                                                   |                                                                                                                     |                                                                                                                                                  | Total 4 |

### **Question 26**

(15 marks)

Parts (a)–(d) of this question refer to the graph below, which shows the trend in antibody levels in the blood after first and second exposures to an antigen.



(a) Describe how the antigen causes a change in the antibody levels following the first exposure. (5 marks)

| Description                                       | Marks   |
|---------------------------------------------------|---------|
| Any 4 points for 1 mark each                      |         |
| Antigens engulfed by macrophages                  |         |
| Antigens presented to B cells/lymphocytes/T cells |         |
| B cells sensitised                                | 1 1     |
| B cells enlarge                                   | 1-4     |
| B cells clone                                     |         |
| B cells form plasma cells                         |         |
| Antibodies are released into the bloodstream      |         |
| Plasma cells produce antibodies                   | 1       |
|                                                   | Total 5 |

(b) Using the information from the graph, describe **two (2)** differences between the responses to the first and second exposures. (2 marks)

| Description                                                                | Marks   |
|----------------------------------------------------------------------------|---------|
| Any two of:                                                                |         |
| Response after 1 <sup>st</sup> exposure takes longer to occur / antibodies |         |
| don't appear immediately after the 1 <sup>st</sup> exposure.               |         |
| 2 <sup>nd</sup> exposure peaks at a higher level/ more antibodies are      | 1–2     |
| produced after the second exposure/ due to memory cells                    |         |
| Levels of antibodies are maintained longer after the second                |         |
| exposure                                                                   |         |
|                                                                            | Total 2 |

| Description  | Marks   |
|--------------|---------|
| Memory cells | 1       |
|              | Total 1 |

(d) This graph represents active immunity. Describe **three (3)** ways in which this differs from passive immunity. (3 marks)

| Description                                                       | Marks   |
|-------------------------------------------------------------------|---------|
| Must be a comparative term to describe but does not need to state |         |
| Any three of:                                                     |         |
| Active produces antibodies in response to antigens whereas        |         |
| passive is when given antibodies from another source/person.      | 1–3     |
| Memory cells produced in active immunity and not in passive.      |         |
| Active has a longer lasting effect than passive                   |         |
| Passive acts faster than active.                                  |         |
|                                                                   | Total 3 |

(e) Name and describe **one (1)** type of immune response apart from antibody production that is involved in fighting pathogens. (4 marks)

| Description                                             | Marks   |
|---------------------------------------------------------|---------|
| Cell mediated immunity                                  | 1       |
| Any three of:                                           |         |
| Production of killer T cells                            |         |
| Destroys pathogens at cellular level                    |         |
| Involves Memory T cells                                 | 1–3     |
| T-helper cells                                          |         |
| Suppresser T cells                                      |         |
| Increase in phagocytosis/increase action or macrophages |         |
|                                                         | Total 4 |

## **Question 27**

### Name and describe the specific type of study shown above used to provide evidence for (a) evolution. (2 marks)

| Description                                                      | Marks   |
|------------------------------------------------------------------|---------|
| Comparative embryology/ developmental anatomy                    | 1       |
| Closely related organisms show similar anatomical development in | 1       |
| the embryonic/ early stages of life                              |         |
|                                                                  | Total 2 |

(b) Using the diagram above, explain the evolutionary relationship of human to the rabbit compared with human to the fish. (2 marks)

| Description                                                     | Marks   |
|-----------------------------------------------------------------|---------|
| Human more closely related to the rabbit/ human more distantly  | 1       |
| related to the fish/rabbit and human more characteristics in    |         |
| common/fish and human have less characteristics in common.      |         |
| Less time since species separated / more recent common ancestor | 1       |
| / more time since species separated / less recent common        |         |
| ancestor                                                        |         |
|                                                                 | Total 2 |

(c) Explain how the study of DNA can provide evidence for evolution. (2 marks)

| Description                                                      | Marks   |
|------------------------------------------------------------------|---------|
| The more similar the sequence of DNA/mitochondria DNA/virus the  | 1       |
| more closely related species are/or a technique example e.g. DNA |         |
| hybridization                                                    |         |
| Therefore the more recently they shared a common ancestor/ less  | 1       |
| time since species separated                                     |         |
|                                                                  | Total 2 |

Parts (a) and (b) of this question refer to the diagram below.



13

(d) When DNA is being used in the study of evolution, how can the polymerase chain reaction (PCR) technique be useful? (2 marks)

| Description                                                 | Marks   |
|-------------------------------------------------------------|---------|
| (Fossils) often only have tiny samples of DNA               | 1       |
| PCR amplifies tiny amounts of DNA/ Increasing the amount of | 1       |
| material/ enabling enough of a sample to be compared        |         |
|                                                             | Total 2 |

(e) The Human Genome Project has provided more supporting evidence for the theory of evolution by providing a better comparison between the DNA of modern humans and extinct hominin species. Explain how the Project could also help to treat genetically-inherited diseases. (3 marks)

| Description                                                      | Marks   |
|------------------------------------------------------------------|---------|
| Any three of:                                                    |         |
| Allows faulty/ mutated genes to be identified                    |         |
| Once identified the reason for the dysfunction/ abnormal protein |         |
| can potentially be identified                                    |         |
| Potentially then genes can be replaced/ switched off/            | 1 2     |
| bypassed/gene therapy                                            | 1-5     |
| Treated with correct protein to cure the disease/ genetic        |         |
| engineering                                                      |         |
| Genetic counselling                                              |         |
| Develop individually specific treatments                         |         |
|                                                                  | Total 3 |

### **Question 28**

## (11 marks)

**MARKING KEY** 

John was involved in a serious motorcycle accident. He failed to take a corner and was thrown head first into a brick retaining wall next to the road he was travelling on. In the hospital emergency department, it was noted that the right side of his brain had been damaged, as shown in the diagram.



(a) Name and describe the main function of the area indicated as the damaged zone of John's brain. (2 marks)

| Description                                                   | Marks   |
|---------------------------------------------------------------|---------|
| 1 mark for name and 1 mark for function                       |         |
| Any one of:                                                   |         |
| Motor area/motor cortex/ cerebrum - communication between     |         |
| nervous and muscular system/send signals to the lower brain   | 1–2     |
| centres/spinal cord/motor neurons to initiate muscle movement |         |
| Speech association area - speech formation                    |         |
| Memory association area - memory/intelligence                 |         |
|                                                               | Total 2 |

(b) Describe how **one (1)** body function will be affected by this injury. (2 marks)

| Description                                                            | Marks   |
|------------------------------------------------------------------------|---------|
| 1 mark for function and 1 mark for describing it                       |         |
| Any one of:                                                            |         |
| Motor/muscle function - (left side)voluntary somatic control/left side |         |
| motor functions/(left) leg paralysis/(left) arm paralysis/paralysis of | 1–2     |
| voluntary muscles                                                      |         |
| Speech - altered/loss of words/inability to form words                 |         |
| Memory - impairment/loss of                                            |         |
|                                                                        | Total 2 |

(c) During his examination, the neurologist used the terms 'white matter' and 'grey matter'. Distinguish between white and grey matter in terms of structure and location in the brain. (4 marks)

|                       | Description                              |                                                              | Marks   |
|-----------------------|------------------------------------------|--------------------------------------------------------------|---------|
| 1 mark per box        |                                          |                                                              |         |
|                       | White Matter                             | Grey Matter                                                  |         |
| Structure             | Axons (nerve fibres) covered with myelin | Axons (nerve fibres)<br>without myelin/ nerve<br>cell bodies | 1—4     |
| Location in the brain | Internal                                 | External (mostly)                                            |         |
|                       |                                          |                                                              | Total 4 |

(d) While in hospital, John was also diagnosed with Parkinson's disease.

(i) State the effect of Parkinson's disease on the brain. (1 mark)

| Description                                                                                                              | Marks   |
|--------------------------------------------------------------------------------------------------------------------------|---------|
| Loss of dopamine/ dopamine receptors/ dopamine neurons/<br>dopamine synapses/substantial nigra or basal ganglia decrease | 1       |
|                                                                                                                          | Total 1 |

## (ii) Describe **two (2)** symptoms of Parkinson's disease.

(2 marks)

| Description                                  | Marks   |
|----------------------------------------------|---------|
| Any two of:                                  |         |
| Loss of motor coordination                   |         |
| Tremor/ intention tremor/ shaking            |         |
| Uncontrolled movement                        |         |
| Inability to move properly/initiate movement | 1–2     |
| Slow movement                                |         |
| Muscle stiffness                             |         |
| Fixed gaze                                   |         |
| Impaired speech                              |         |
|                                              | Total 2 |

### **Question 29**

MARKING KEY

- (a) When hyperventilation occurs, a person breathes faster and more deeply than normal.
  - (i) What effect would this have on the level of carbon dioxide in the blood?

(1 mark)

| Description | Marks   |
|-------------|---------|
| Decrease    | 1       |
|             | Total 1 |

(ii) Where in the brain would this change in level be detected? (1 mark)

| Description                                     | Marks   |
|-------------------------------------------------|---------|
| (Respiratory centre) Medulla oblongata/ medulla | 1       |
|                                                 | Total 1 |

(b) A girl had the pH levels in her blood taken immediately before and after swimming 500 metres in a pool. The results showed a drop in pH from 7.4 to 7.3.

What caused this drop in pH to occur?

(3 marks)

| Description                                                                                                                                                           | Marks   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Increase in acidity/ production of carbonic acid/ production of lactic acid/increase $H^+$ ions/CO <sub>2</sub> + $H_2O \rightarrow H_2CO_3 \rightarrow H^+ + CO_3^-$ | 1       |
| pH decrease caused by increase in carbon dioxide                                                                                                                      | 1       |
| Produced in cellular respiration/increased activity                                                                                                                   | 1       |
|                                                                                                                                                                       | Total 3 |

(c) Describe **three (3)** steps that need to occur so that more oxygen can be delivered to skeletal muscles when they become very active during exercise. (3 marks)

| Description                                                                     | Marks   |
|---------------------------------------------------------------------------------|---------|
| Increased rate/ depth of breathing/dilation of bronchioles                      | 1       |
| Increase in cardiac output/ heart rate/ blood pressure                          | 1       |
| Vasodilation in muscle arterioles/ blood vessels/ increase in muscle blood flow | 1       |
|                                                                                 | Total 3 |

(d) When oxygen levels are extremely low, they have an effect on the regulation of breathing. Provide **two (2)** diseases or environmental situations in which this would happen. (2 marks)

| Description                     | Marks   |
|---------------------------------|---------|
| Any two of:                     |         |
| Lung disease                    |         |
| Emphysema                       |         |
| Asthma                          |         |
| Cancer                          | 1–2     |
| Any other named lung disease    |         |
| High altitudes                  |         |
| Loss of pressure in an aircraft |         |
| Diving (without air)            |         |
|                                 | Total 2 |

Section Three: Extended answer

### **Question 30**

(a) During the biological evolution of hominins from the earliest australopithecines to early *Homo sapiens*, there were also significant cultural advances, including tool cultures and changing lifestyles.

Describe these advances with reference to the particular hominin groups of australopithecines, *Homo habilis, Homo erectus* and early *Homo sapiens*.

(i) Tool cultures, including manufacture and uses.

Tool culture names not necessary.

|                   | Description                                                                                              |                                                                                                             |                                                                                                                                                                                                            | Marks                                                                                                                                                                                                                                                                                                                                                           |         |
|-------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Tools Manufacture | australopithecines<br>Use of pebble tools/<br>But no evidence of<br>manufacture/no tool<br>culture       | H Habilis<br>Pebble tools/<br>cores with<br>flakes<br>removed on<br><b>some</b> sides/<br>oldowan<br>tools. | <i>H erectus</i><br>bifaced<br>scrapers/more<br>flakes<br>removed on<br>both sides/<br>pressure<br>flaking<br>or<br>Used<br>antler/bone to<br>remove flakes<br>(one of these)<br>or<br>acheulian<br>tools. | early <i>H</i> sapiens<br>Finer detail and<br>complex designs/<br>Flake tools-edges<br>of flakes shaped<br>and reworked/<br>sharpened<br>or<br>Bone, antler, ivory,<br>wood, leather as<br>well as stone/<br>Attached to wooden<br>shafts/handles/<br>hafting compound<br>tools<br>or<br>Use of burin to<br>make tools/First<br>use of blades (one<br>of these) | 1–4     |
| Tools Uses        | Possibly used by<br>some Aust including<br>choppers, and<br>scrapers for cutting<br>meat/no tool culture | choppers/<br>and<br>scrapers/for<br>cutting meat.                                                           | As hand-axes/<br>Killing animals/<br>digging up<br>plants/cutting<br>meat/<br>producing fire/<br>skinning<br>animals                                                                                       | Increase in variety<br>of uses- fishing,<br>(fish hooks,<br>harpoons)/<br>preparing skins for<br>clothing, (needles)/<br>building shelters                                                                                                                                                                                                                      | 1–4     |
|                   | •                                                                                                        | •                                                                                                           | ·                                                                                                                                                                                                          | ·                                                                                                                                                                                                                                                                                                                                                               | Total 8 |

(60 Marks)

(30 marks)

(8 marks)

## (ii) Changing lifestyles

\* Must work horizontally, no evidence is a maximum of 1 mark per lifestyle discussed.

| Description       |                    |                                                                                                         | Marks                                                                       |                                                                                                       |         |
|-------------------|--------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------|
|                   | australopithecines | H Habilis                                                                                               | H erectus                                                                   | early H sapiens                                                                                       |         |
| Use of fire       | No evidence        |                                                                                                         | Yes/ to cook /<br>hunt/<br>protection/<br>warmth                            | Also includes<br>torches with animal<br>fat                                                           | 1–3     |
| Living Sites      | Home bases         | Home bases/<br>Probably<br>slept in trees                                                               | Home bases/<br>caves/ some<br>evidence of<br>manmade<br>shelters/huts       | Manmade shelters,<br>long houses                                                                      | 1–4     |
| Obtaining food    | No<br>evidence     | Small groups<br>shared food/<br>Hunting and<br>scavenging<br>meat,<br>gathering<br>plants               | Large<br>cooperative<br>hunting of<br>small animals/<br>butchering<br>sites | Large cooperative<br>hunting of large<br>animals, fishing                                             | 1–4     |
| Spiritual beliefs | No evidence        |                                                                                                         |                                                                             | Evidence of rituals,<br>burials, artefacts<br>with burials,<br>cannibalism, body<br>decoration /ochre | 1–2     |
| Art               | No evidence        |                                                                                                         |                                                                             | Mural and portable art                                                                                | 1–2     |
| Language          | No<br>evidence     | Possible due<br>to speech<br>areas in the<br>brain (but<br>larynx may<br>not be<br>developed<br>enough) | Possible due<br>to cooperative<br>hunting groups                            | Probable due to<br>very large groups<br>hunting large<br>animals                                      | 1–4     |
|                   |                    |                                                                                                         | 1                                                                           | 1                                                                                                     | Total 8 |

19

(b) Early *Homo sapiens* were in existence at a time that enables us to determine the date of their remains using carbon-14 dating. Explain how carbon-14 dating determines the age of fossil remains and describe **two (2)** of its limitations. (8 marks)

| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| <ul> <li>Any six of</li> <li>Absorption of C<sup>14</sup>O<sub>2</sub> by plants</li> <li>In food chain Carbon-14 passed on</li> <li>Measure the amount of carbon-14/radiocarbon/C-14 in the remains</li> <li>Carbon-14/radiocarbon/C-14 decays into nitrogen/N-14</li> <li>Establish the ratio of carbon 14/radiocarbon/C-14 to 10<sup>12</sup> carbon-12</li> <li>Carbon 14/radiocarbon-14/C-14 has a half life of 5730 years</li> <li>The amount of carbon 14/radiocarbon-14/C-14 in the remains indicates the number of half lives that have passed</li> <li>Multiply the number of half lives by 5730 years</li> <li>Gives an absolute age/absolute age determined</li> <li>Sketch a simple graph</li> </ul> | 1–6     |
| <ul> <li>Limitations.</li> <li>Any two of:</li> <li>If the remains are older than about 60 000/ 70 000 years there would be no measurable C-14 left.</li> <li>The substance being tested must contain carbon/be organic</li> <li>The ratio of C-14 to 10<sup>12</sup>C-12 in living matter has not been absolutely constant over the past 60 000 years</li> <li>The technique assumes that C-14 in animals and plants matches the level in the general environment, which in rare cases it does not</li> <li>Requires a minimum amount of substance.</li> </ul>                                                                                                                                                   | 1–2     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total 8 |

(c) If you have a large number of fossil skulls from various hominin groups, trends from more primitive to more advanced can be seen.

Describe **six (6)** features of the hominin skull and the trends you would see in these features that would determine the order of the fossils, from least to most advanced.

(6 marks)

| Description                                                                                 | Marks   |
|---------------------------------------------------------------------------------------------|---------|
| Any six of:                                                                                 |         |
| Size of cranium/ cranial capacity increases/ cerebral cortex                                |         |
| increases                                                                                   |         |
| Shape of cranium becomes more rounded/higher/ presence of                                   |         |
| a forehead                                                                                  |         |
| Relative size of jaw decreases                                                              |         |
| Degree of prognathism reduces/face becomes flatter                                          | 1_6     |
| <ul> <li>Size of teeth reduces/evenness of teeth increases</li> </ul>                       | 1-0     |
| <ul> <li>Position of the foramen magnum changes from post-central to<br/>central</li> </ul> |         |
| Appearance of a chin/nasal bridge in more recent fossils                                    |         |
| Size of zygomatic arches reduces                                                            |         |
| Size/presence of brow ridges reduces                                                        |         |
| Decrease in post orbital constriction                                                       |         |
|                                                                                             | Total 6 |

### **Question 31**

- (a) Human skeletal muscle is activated by a complex relationship between nervous stimuli and the processes inside the muscle fibre.
  - (i) Describe the transmission of a nerve impulse at the neuromuscular junction. Include an outline of the structures and chemicals involved in the process.

(7 marks)

(30 marks)

| Description                                                               | Marks   |
|---------------------------------------------------------------------------|---------|
| May use a fully annotated diagram.                                        |         |
| Any seven of:                                                             |         |
| <ul> <li>The neuromuscular junction is the point where nerve</li> </ul>   |         |
| fibre/motor neuron meets the muscle fibre                                 |         |
| The axon ending/branch has an enlarged end/synaptic knob                  |         |
| <ul> <li>The enlarged end/synaptic knob sits next to/fits in a</li> </ul> |         |
| depression of the muscle fibre/motor end plate                            |         |
| Leaving a gap/synapse                                                     |         |
| <ul> <li>Transmission across the gap requires a</li> </ul>                |         |
| neurotransmitter/acetylcholine                                            | 1_7     |
| Which is contained in vesicles                                            | 1-1     |
| <ul> <li>That are located in the synaptic knob/axon ending</li> </ul>     |         |
| Using energy from mitochondria                                            |         |
| The presence of calcium                                                   |         |
| The neurotransmitter/acetylcholine diffuses from the axon                 |         |
| endings/axon terminals/presynaptic fibres                                 |         |
| <ul> <li>Across the gap/synapse to the muscle fibre</li> </ul>            |         |
| • Where it binds to the receptors on the motor end plate/muscle           |         |
| fibre                                                                     |         |
| Causing depolarization/muscle contraction/muscle stimulation              |         |
|                                                                           | Total 7 |

### (ii) The sliding filament model is used to suggest how muscle contraction occurs. Explain how this model works. (7 marks)

| Description                                                  | Marks   |
|--------------------------------------------------------------|---------|
| May use a fully annotated diagram.                           |         |
| Any seven of:                                                |         |
| Filaments pass across each other to cause the muscle to      |         |
| shorten                                                      |         |
| Energy from ATP is needed for this                           |         |
| Actin are the thin filaments                                 |         |
| Myosin, which are the thick filaments                        |         |
| The actin filaments slide over the myosin filaments          |         |
| Z lines/anchor points for actin to become closer together/   | 1–7     |
| shortens                                                     |         |
| Sarcomere shortens                                           |         |
| The filaments do not change in length                        |         |
| Calcium is released from sacroplasmic reticulum              |         |
| • A cross bridge/ forms myosin head connecting the filaments |         |
| Movement occurs/iron bridge pulls them over one another      |         |
| The I band/region where only actin occurs shortens           |         |
| The actin slide across the myosin                            |         |
|                                                              | Total 7 |

## 21

22

HUMAN BIOLOGICAL SCIENCE

STAGE 3

(b) Describe the pathway taken by a nerve impulse in a spinal reflex arc and explain **three (3)** ways in which it is considered to be a protective mechanism. (8 marks)

| Description                                                         | Marks   |
|---------------------------------------------------------------------|---------|
| May use a fully annotated diagram.                                  |         |
| Any five of:                                                        |         |
| • Receptor detects the stimulus $\rightarrow$                       |         |
| Sensory neuron towards the spinal cord/dorsal root                  | 15      |
| Spinal cord                                                         | 1-5     |
| Containing connector /association/neuron                            |         |
| • Motor neuron/ventral root $\rightarrow$                           |         |
| Effector/ skeletal muscle                                           |         |
| Any three of:                                                       |         |
| Protective reflex is quick                                          |         |
| Separate pathway up the spinal cord to the brain                    | 1 2     |
| Message registers at brain <u>after</u> response/automatic response | 1-5     |
| Move limbs/body/body part away from danger                          |         |
| Prevents over stretching/ damage to muscles                         |         |
|                                                                     | Total 8 |

(c) Sarah was listening to her iPod<sup>™</sup> and not paying attention to the traffic as she walked home from school. She didn't hear the car behind her as she stepped off the footpath. The driver of the car sounded the horn and screeched to a halt, just missing her.

Describe **four (4)** beneficial ways that Sarah's body may have responded to this frightening situation and how these responses would have been advantageous for her. (8 marks)

| Description                                                                                                                                                                    | Marks   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Mention response for 1 mark and benefit for 1 mark.                                                                                                                            |         |
| Any four of:                                                                                                                                                                   |         |
| <ul> <li>Increased stimulation of sympathetic nervous system - for<br/>'flight or fight' response</li> </ul>                                                                   |         |
| Release of noradrenaline/ adrenaline at the heart/adrenal gland - increasing heart rate/breathing rate/glucose availability                                                    |         |
| <ul> <li>Increases blood pressure - supplying more nutrients to<br/>muscles</li> </ul>                                                                                         |         |
| <ul> <li>Increased sympathetic stimulation of blood vessels/ arterioles/<br/>vasoconstriction -increases blood pressure/vasodilation of<br/>blood vessel to muscles</li> </ul> | 1–8     |
| <ul> <li>Decreased parasympathetic stimulation - less blood flow to<br/>digestive tract/kidney/bladder</li> </ul>                                                              |         |
| Dilation of bronchi in lungs - to increase gas exchange                                                                                                                        |         |
| • Increased access to energy - for rapid movement/flight or fight                                                                                                              |         |
| Pupils dilate - giving greater peripheral vision                                                                                                                               |         |
| Release of cortisol at adrenal cortex – increasing blood sugar                                                                                                                 |         |
|                                                                                                                                                                                | Total 8 |

### **Question 32**

### (30 marks)

- (a) Mrs Jones had been feeling unwell for some months and was not able to cope with everyday activities. She had noticed that her neck was getting thicker, preventing her from buttoning her shirts. She visited her doctor, who after a physical examination and blood tests, diagnosed low thyroid activity, or hypothyroidism.
  - (i) Imagine you are Mrs Jones's doctor and are explaining how the thyroid gland works. Provide a description of the thyroid hormone feedback loop. (8 marks)

| Description                                                               | Marks   |
|---------------------------------------------------------------------------|---------|
| May use a fully annotated diagram.                                        |         |
| Does not require homeostatic model terms.                                 |         |
| Any eight of:                                                             |         |
| Hypothalamus produces TSH RF/thyroid stimulating hormone releasing factor |         |
| TSH RF travels into the anterior pituitary                                |         |
| Blood vessels/portal system conducts/transmits TSHRF                      |         |
| Pituitary gland produces TSH                                              | 1–8     |
| TSH is released into the blood stream/general circulation                 |         |
| TSH stimulates the thyroid gland                                          |         |
| TSH produces thyroid hormone/thyroxine                                    |         |
| Thyroid hormone/thyroxin is released by the gland into the                |         |
| blood stream/general circulation                                          |         |
| Thyroid hormone/thyroxin negatively feeds back to                         |         |
| pituitary/hypothalamus controlling output of TSH                          |         |
|                                                                           | Total 8 |

(ii) Later that week, Mrs Jones is talking with her friends about her medical experience. A friend mentions that one of her family members has a thyroid disease. The doctor called it 'hyperthyroidism, or Graves' disease'.

Compare and contrast Mrs Jones's hypothyroidism with hyperthyroidism (Graves' disease). For each condition outline **two (2)** causes, **two (2)** signs or symptoms and **one (1)** treatment. (10 marks)

| Des                                              | cription                           | Marks    |
|--------------------------------------------------|------------------------------------|----------|
| Hypothyroidism                                   | Hyperthyroidism                    |          |
| Any 2 points for both conditions for 1 mark each |                                    |          |
| Causes - Lack of iodine in the                   | Causes – Genetic/ immune           | 1—4      |
| diet/ surgery/ cancer/                           | system reaction/ cancer/adenoma    |          |
| autoimmune (Hashimoto's disease)/ radiation      | secreting hormone                  |          |
| Any 2 points for both conditions for 1 mark each |                                    |          |
| Signs and Symptoms -                             | Signs and Symptoms - Increases     |          |
| Decreases heart rate and                         | heart rate and blood pressure/     |          |
| blood pressure/ cold                             | heat intolerance/ weight loss/     |          |
| intolerance/ weight gain/                        | goitre/ normal CNS development/    | 1—4      |
| goitre/ poor CNS development/                    | hyperexcitable/ abnormal brain     |          |
| normal eve appearance/ITH                        | aveballs/exonhthalmos/tTH/         |          |
|                                                  | ↑appetite/↑sweating/fatigue        |          |
| Any 1 point for both conditions for 1 mark each  |                                    |          |
| Treatment - Replacement of                       | Treatment - Drugs to block         |          |
| iodine in the diet/ Thyroid                      | formation of thyroid hormone/      |          |
| hormone/ thyroxine                               | propothiouracil/ carbamazapine/    | 1–2      |
| replacement                                      | Surgery to remove all/ part of the |          |
| Surgery/ surgery for goitre                      | gland/ Radioactive treatment/      |          |
|                                                  | radioactive iodine                 | T-4-140  |
|                                                  |                                    | lotal 10 |

(b) Glucose is required in the body cells for the production of energy during cellular respiration. To maintain glucose levels in a cell, negative feedback mechanisms are necessary for more glucose to be released into the bloodstream and to enter the cell.

Identify, name the source and describe the role of **three (3)** hormones in increasing glucose levels in the bloodstream. (12 marks)

| Description                                              | Marks    |
|----------------------------------------------------------|----------|
| Any three hormones:                                      | 1        |
| Glucagon                                                 |          |
| Produced by the alpha cells/Islets of                    | 1        |
| Langerhans/pancreas/endocrine pancreas/pancreatic islets | 1        |
| Enters the liver                                         |          |
| Glycogenolysis/breakdown of glycogen to glucose          | 1.2      |
| Promotes gluconeogenesis/breakdown of lipids/amino acids | 1-2      |
| Into glucose which enters the bloodstream                |          |
| Cortisol                                                 | 1        |
| Produced by adrenal cortex                               | 1        |
| Amino acids to liver for gluconeogenesis/amino acid to   |          |
| glucose                                                  |          |
| Glycogenolysis/breakdown of glycogen to glucose          | 1–2      |
| Glucose enters the blood stream                          |          |
| Removal of amino acids from muscle cell                  |          |
| Adrenaline/ noradrenaline                                | 1        |
| Produced by adrenal medulla                              | 1        |
| Glycogenolysis/breakdown of glycogen to glucose          |          |
| Glucose enters the bloodstream                           |          |
| Glycogen in muscles is acted on                          |          |
| Lactic acid is produced                                  | 1 0      |
| Lactic acid is converted to glucose in the liver         | 1-2      |
| Increased insulin receptor numbers on cell surface       |          |
| Increased sensitivity of insulin receptors               |          |
| Promotes gluconeogenesis/breakdown of lipids/amino acids |          |
|                                                          | Total 12 |

### ACKNOWLEDGEMENTS

| Section Two:<br>Question 21 | Diagram adapted from: <i>Muscle Titans</i> (2011, 2 April). [Web log message].<br>Retrieved June, 2011, from www.muscletitans.com.                                                                         |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | Diagram adapted from: <i>I found the cure</i> [Website]. (2010, July 15). Retrieved July, 2011, from www.ifoundthecure.com.                                                                                |
| Question 23(a)              | Diagrams adapted from: Joints. (n.d.). Retrieved March, 2011, from<br>http://ovrt.nist.gov/projects/vrml/h-anim/jointInfo.html.                                                                            |
| Question 23(b)              | Diagrams adapted from: MacKean, D. (n.d.). <i>Biology GCSE &amp; IGCSE question bank with exercises and discussions: 17.</i> Retrieved March, 2011, from www.biology-resources.com/biology-questions.html. |
| Question 27                 | Diagram adapted from: <i>Notes for zoology</i> . (2009, September 26). Retrieved March, 2011, from www.cssforum.com.pk/css-optional-subjects/group-d/zoology/14536-notes-zoology-16.html.                  |
| Question 28                 | Diagram adapted from: <i>CEU course: Brain anatomy and function</i> . (n.d.). Retrieved March, 2011, from www.neuroskills.com/edu/ceufunction1.shtml.                                                      |