Student worksheet

7.5 Force equals mass \times acceleration

Pages 164-165
Newton's second law: $F_{\text {net }}=m a$
1 Describe Newton's second law.

2 What is the difference between mass and weight?

3 What formula can be used to calculate net force?

4 Complete the equation triangle for net force below and describe how it works.

\qquad
\qquad
\qquad

Where necessary below, use $g=9.80 \mathrm{~m} \mathrm{~s}^{-2}$. Unit conversions: 1000 grams $=1$ kilogram and 1000 kilograms $=1$ tonne.

5 How much horizontal net force is required to accelerate a $1200-\mathrm{kg}$ car at $1.5 \mathrm{~m} \mathrm{~s}^{-2}$?

6 A net force of 16 N gives a bowling ball an initial acceleration of $2.5 \mathrm{~m} \mathrm{~s}^{-2}$. What is the mass of the bowling ball?

7 A speed skater has a mass of 64 kg . She is providing a driving force of 400 N , and there is a frictional force of 240 N against her. Draw these two forces acting on her and then determine her acceleration.

Extend your understanding

8 A skydiver of mass 85 kg is falling through the air at terminal velocity (constant speed).

a What is the weight force acting on the skydiver?
b How much air resistance is acting on the skydiver?

9 The Airbus A380 has a mass at take-off of 575 tonnes. During take-off, its four engines provide a total thrust of 1300 kN . Its take-off speed is $270 \mathrm{~km} \mathrm{~h}^{-1}$ and it takes 72 seconds from rest to reach this speed.

a What is the average acceleration of the A380 during its take-off run? Give your answer correct to two decimal places.
b What is the average total resistive force acting against the A380 during its take-off run?

