HEAT

THE NATURE OF HEAT

- **Heat:** the form of energy which can make the temperature of an object change /increase
- Unit of heat energy: Joule
- Temperature: a measure of how hot is an object
- **Thermometer**: measuring temperature in degrees Celsius (°C)
- Source of Heat:
- . Chemical Energy (fossil fuel)
- Electrical Energy (toasters, heaters)
- Mechanical Energy (spacecraft)
- 4. Sound Energy (loud noise through wall)
- Nuclear Energy (produce steam)
- Solar Energy (solar hot system water)Uses of Heat: (cooking, heating, cleaning, etc.)
- **Problems of Heat** (uncomfortable, serious burn, damage, thermal pollution, machines friction)
- The Kinetic Theory and Heat:
- All matter is: made up of small particles that are moving because of heat
- Particles in: Solid (vibrate), Liquids (vibrate and move about), Gases (move about very rapidly and freely)
- 3. Absolute Zero all motion of particles stops

THE TRANSFER OF HEAT

- **Methods of Heat Transfer:** Conduction, Convection, and Radiation, Evaporation
- Conduction:
- 1. Occurs mostly in solid
- 2. Heat passes through particles by vibrating and colliding
- 3. Metals are good conductors (Copper, iron, Aluminium, steels). Silver is the best conductor
- Insulator: poor conductors (non metals, plastics, gases)
 Examples (saucepan, insulation in house)
- Convection:
- Occurs in liquids and gases
- 2. Heat is carried by moving currents in liquids and gases
- Examples convection in: land and sea breeze, thermals, a log fire, chimney, in room ventilation, circulation system
- Radiation:
- Different from conduction and convection which require matter to transfer heat, radiation doesn't require matter to transfer heat
- Radiation: a form of energy transport consisting of electromagnetic waves, no mass is exchanged and no medium is required.
- 3. Examples: Sun heats the Earth (infra-red radiation)
- 4. Good absorbers and radiators: dark and rough surfaces
- Poor absorbers and poor radiators: smooth, light surfaces
- Vacuum Flask (application of conduction, convection, and radiation)

EFFECTS OF HEAT AND ENERGY

- Expansion:
- 1. increasing size of substances
- Solids: thermostat (bi-metallic strip), e.g. copper and brass expand more than iron, a bridge, expansion influenced by 3 factors: a. The nature of material, the size of object, the rise in temperature
- Liquids: expand greater than solid, liquid in solid container (the container also expands), methylated spirit expands more than water
- . Gases: expand greater than solids and liquids. All gases expand at the same rate
- Thermometers: expansion of liquids to measure temperature (alcohol, mercury)
- Changes of State: melting (solid to liquid), boiling (liquid to gas), condensation (gas to liquid), freezing (liquid to solid)
- Latent Heat: changing a substance from one state to another, heat is supplied or removed during change of state
- Evaporation: a change from liquid to gas that occurs at all temperatures, three influenced factors: liquid temperature, surface area, vapour content
- Altering melting points and boiling points of water (Standard: freezing point of water 0°C, boiling point 100°C), can be different, because of:
- . The effect of Pressure: (high pressure increases the boiling point and decreases the freezing point, vice versa). Example: high pressure (water boils at higher temperature, e.g. pressure cooker)
- The Effect of Impurities (increase the boiling point and decrease the freezing point), e.g. use salt on icecovered road.