

ADVANCED CHEMISTRY CONTENTS

ASSESSMENT

STUDENT OUTCOMES

PROGRAM OF WORK

ATOMS and IONS

Atoms and Ions Worksheet

ELEMENTS

Properties and Uses of Elements Assignment
Check Test on Properties and Uses of Elements Assignment
IONIC COMPOUNDS
Activity 1: Dissociation of ionic compounds
Activity 2: Charge possessed by metal and non-metal ions
Formulae writing worksheet for ionic compounds

SOLUTIONS

Activity 3: Precipitation reactions

COVALENT MOLECULAR SUBSTANCES

Activity 4: Molecular models
Formula of common molecular substances worksheet

REACTIONS

Activity 5: Acid + Metal
Activity 6: Acid + Carbonate
Activity 7: FANTAstic fun with $\mathbf{C O}_{2}$
Activity 8: Acid + Base
Acid or base? worksheet
Predicting products worksheet
General reactions worksheet
General reactions summary sheet
REVISION
Revision Assignment - Atoms and Formulae
Advanced Chemistry Revision Exercise Sheet
OPEN INVESTIGATIONS
Notes on Open Investigations
Science Learning Area Outcomes: Strands; Levels; Outcomes
Macaroni Trial Investigation
Key Terms
Investigation Guide
Open Investigation Levelling Assessment - What Level am I?
Major Science Investigation and Suggested Timeline
How to write up and display a science investigation

CHEMICAL CALCULATIONS

THE MOLE

Mole Calculations notes
Moles - Method of Attack Guidesheet
Guide to Mole Calculations Notes
What's in a mole worksheet
Moles worksheet 1 and 2

PERCENTAGE COMPOSITION

Percentage Composition notes
Activity 9: Percentage composition of MgO
Activity 10: Water of crystallisation

REACTION STOICHIOMETRY (CALCULATIONS INVOLVING EQUATIONS)

How to do Calculations Involving Chemical Equations Sheet
Calculations Involving Chemical Equations - Type Examples
Calculations from Equations Flowchart (An Alternative Method)
Activity 11: Decomposition of sodium hydrogencarbonate
Activity 12: Mole relationship between Cu and Fe
Activity 13: Molar volume of hydrogen gas

CHEMISTRY IN CONTEXT

Activity 14: Extraction of a metal from its ore
Activity 15: Smelting a lead ore
Minerals and Mining Research Assignment
Chemistry of Mining poster
FINAL TESTS
Test A: Laboratory Test - writing equations and observations
Test B: Chemical Calculations

ADVANCED CHEMISTRY ASSESSMENT

All classes must complete:
MAJOR TESTS:
Advanced Chemistry Test 40
Laboratory Test 10

MAJOR SCIENCE INVESTIGATION (one report per group) 10
(A lot of this will be done at home or at other non-class time
and will assist in determining your Investigating Scientifically Level)
IN CLASS TEST BASED ON INVESTIGATION 10

Optional tasks (make up to 100 marks)

OPEN INVESTIGATION - PEER ASSESSED
(This will assist in determining your Investigating Scientifically Level)

SELECTED CLASS ACTIVITIES and IN-CLASS SKILLS
(These are selected at random so make sure all activities are completed)

MINING ASSIGNMENT OR POSTER

SHORT TESTS BASED ON SKILLS eg equation writing

Sample Year 10 Chemistry Program (based on the new edition of Fundamentals of Science 4)

Content area	Objectives	Text:Fundamentals of Science 4	Questions	Activities
Atoms and Ions 3 periods 13.5 week course	- Compare charge and mass for protons, neutrons, and electrons. - Describe the composition of the nucleus and outer region. - Define and show an understanding of Atomic number. - Define and show an understanding of Mass number and use ${ }_{Z}^{A} X$ notation to compare the composition of various atoms and isotopes. - Compare the structure of an atom and its ion. Consider: numbers of sub atomic particles electron configuration using the $2,8,8$ model.	Chap 21 p208-213 Proctor [Introduction to Chemical Calculations by Matthews and Winter are other sources of problems]	Chap Quest 5-13 p214 Study Guide Set 1 p5 Study Guide Set 2 p13	Atoms and ions worksheet
Elements 1 period ($\downarrow 4$ periods)	- Differentiate between metal and non-metal elements. Consider: Physical properties such as: appearance, conductivity, malleability, and ductility. Position in the periodic table. Ion charge, ie only metal elements form positive ions (exceptions $\mathrm{H}^{+}, \mathrm{NH}_{4}{ }^{+}$), non metal atoms form negative ions. Show an understanding of this idea by classifying elements as metallic or non metallic according to their valency.			Properties and Uses of elements assignment Properties and Uses of elements assignment check test
Ionic compounds 5 periods ($\downarrow 9$ periods)	- Define and differentiate between elements, compounds and mixtures. - Show an understanding that ionic compounds consist of a combination of metal elements (or $\mathrm{NH}_{4}{ }^{+}$) and non metal elements, ie identify ionic compounds from their chemical formula. - Show an understanding of the electron transfer between metal and non metal elements during the formation of ionic compounds. - Understand the gain and loss of electrons involved in the formation of ionic compounds and describe this in terms of oxidation and reduction. (Half equations are not required but these may be useful in understanding the processes.) - Describe the lattice structure of ionic compounds.	Chap 22 p216 p220-225	Chap Quest 1-2 p226 Practice Ex 1-3 p225 Chap Quest 8-13 p226	Activity 1 Dissociation of ionic compounds Activity 2 Charge possessed by metal \& non-metal ions

Content area	Objectives	Text: Fundamentals of Science 4	Questions	Activities
Ionic compounds (continued)	- Show an understanding that ionic compounds will be more stable than the elements from which they form because of the attraction between the opposite charged ions in the ionic lattice. - Write balanced formula for ionic compounds using the following valencies: - STUDENTS NEED TO KNOW THESE VALENCIES $\begin{aligned} & \mathrm{H}^{+}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Ag}^{+}, \mathrm{Pb}^{2+}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{S}^{2-}, \mathrm{Cl}^{-}, \mathrm{O}^{2-} \text {, } \\ & \mathrm{F}, \mathrm{OH}, \mathrm{NO}, \mathrm{CO}_{3}^{2-}, \mathrm{SO}_{4}^{2-}, \mathrm{NH}_{4}^{+}, \\ & \text {(new) } \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Ba}^{2+}, \mathrm{NO}_{2}^{-}, \mathrm{SO}_{3}{ }^{-2}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{PO}_{4}^{3-}, \mathrm{CH}_{3} \mathrm{COO}^{-} \end{aligned}$		Study Guide Set 3 p18 Study Guide Set 5 p27 Set 6 p28	Formula writing work sheets (Ionic compounds)
Solutions 5 periods $(\Downarrow 14$ periods)	- Define the terms, soluble, insoluble, solute, solvent and solution. - Show an understanding of the dissolving process for a soluble ionic compound. - Know that concentration of a solution can be expressed in $\mathrm{mol} \mathrm{L}^{-1}$ and $\mathrm{g} \mathrm{L}^{-1}$. - Demonstrate an awareness of the independent nature of the ions in an ionic solution. - Use a table of solubilities to predict the solubility of various ionic compounds. - Use a table of solubilities to predict the formation of a precipitate when two ionic solutions are mixed. - Write net ionic equations to show the formation of a precipitate from mixing two ionic solutions.	Chap 25 p248	Prac Ex 1-2 p248 Chap Quest 7 p252 Study Guide Set 11 p48	Activity 3 Precipitation reaction
Covalent molecular substances 3 periods ($\downarrow 17$ periods)	- Show an understanding that covalent molecular substances (elements or compounds) consist of a combination of non metal elements only, ie identify covalent molecular substances from their formula. (At this stage not expected to know covalent network exceptions). - Describe covalent bonding between a pair of atoms in terms of a sharing of electrons. - Describe the structure of a molecule in terms of two or more non metal atoms covalently bonded into a single entity. - Be able to interpret or sketch molecular diagrams or structural formula (not molecular shape) for simple covalent molecular substances.	Chap 22 p216-220	$\begin{gathered} \text { Chap Quest } \\ 1-7,14-16 \\ \text { p } 226 \end{gathered}$ Study Guide Set 4 p19	Activity 4 Molecular models

Content area	Objectives	Text: Fundamentals of Science 4	Questions	Activities
Covalent molecular substances (continued)	- Describe the structure of a covalent molecular substances as consisting of a large number of molecules with very little attraction between the molecules. - Know the names and formula for the following covalent molecular elements and compounds: $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{CO}, \mathrm{NO}_{2}, \mathrm{SO}_{2}, \mathrm{SO}_{3}$, $\mathrm{HNO}_{3}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{CH}_{3} \mathrm{COOH}$.			Formula Sheet Selected molecular compounds and elements

$\xrightarrow{\text { Heat }}$				
Reactions 7 periods ($\downarrow 24$ periods)	- Use coefficients to balance a partially completed equation (given formula). - Write a balanced equation give a word equation. - Know the formula and name of the acids: $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}, \mathrm{HCl}, \mathrm{H}_{3} \mathrm{PO}_{4}$, $\mathrm{CH}_{3} \mathrm{COOH}$. - Know the general reaction types and associated observations: acid + metal \rightarrow salt + hydrogen gas acid + carbonate \rightarrow salt + water + carbon dioxide gas acid + hydrogen carbonate \rightarrow salt + water + carbon dioxide gas acid + metal hydroxide \rightarrow salt + water carbonate metal oxide + carbon dioxide gas hydrogencarbonate metal oxide + water + carbon dioxide gas metal + oxygen \rightarrow metal oxide non-metal + oxygen \rightarrow non-metal oxide - Predict the formula of the products or reactants for the above reaction types given either the reactants or products. - Write balanced equations for the above reaction types given the formula or names of the reactants.	$\begin{gathered} \text { Chap } 25 \\ \text { p242-244 } \\ \text { p228 } \\ \text { p246-247 } \end{gathered}$	Prac Ex $1-2$ p245 Prac Ex $1-3$ p247 Chap Quest $3-6,9-11$ p251-252 Revision Assignment Atoms \& Formulae OR Advanced Chemistry Revision Exercise Sheet Study Guide Set 7 p33 Set 8 p34 Set 9 p39 Set 10 p47	Activity 5 Acid - metal Activity 6 Acid - carbonate Activity 7 FANTAstic fun with CO_{2} Activity 8 Acid - base Is it an acid or base worksheet Predicting products work sheet General Reactions worksheet General Reactions Summary Sheet

WILL EITHER FOLLOW THE PROGRAM FOR CHEMICAL CALCULATIONS AS SHOWN OR WILL USE THE Introductory Chemistry Study Guide p51-95	for atoms or molecules in molecular substances like $\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}$. for ions or atoms in ionic substances like $\mathrm{NaCl}, \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. - Define and locate (from a Periodic Table) the atomic mass of the elements. - Determine the Molar Mass of a substance given its formula. - Calculate the moles of a substance from its mass using: $n=\frac{m}{M}$ - Know that the volume of a fixed mass of gas is affected by its temperature and pressure. - Know that the volume occupied by 1 mole of any gas at S.T.P. is 22.4 L . - Calculate the moles of a gas at S.T.P. using: $\mathrm{n}=\frac{\mathrm{V}}{22.4}$	$\begin{gathered} \text { Chap } 32 \\ \text { p349-353 } \end{gathered}$	$\begin{gathered} 1-18 \text { p322 } \\ \text { Prac Ex 1-4 } \\ \text { p353 } \\ \text { Chap Quest } \\ 1-8 \text { p357 } \end{gathered}$	Guide to Mole Calculations What's in a mole worksheet Moles Worksheet 1 Moles Worksheet 2
CHEMICAL CALCULATIONS Percentage Composition 3 periods $(\Downarrow 41$ periods $)$	- Calculate the percentage composition of elements in compounds. - Calculate the percentage composition of water in hydrated compounds. - Calculate the mass composition of the constituents in a given quantity of a compound and vice versa.	$\begin{gathered} \text { Chap } 30 \\ \text { p330-332 } \end{gathered}$	Prac Ex 1-4 p332 Chap Quest $11-20$ p334	Activity $\mathbf{9}$ $\begin{gathered}\text { Percentage composition } \\ \text { of MgO }\end{gathered}$ Activity $\mathbf{1 0}$ Water of Crystallisation

Content area	Objectives	Text: Fundamentals of Science 4	Questions	Activities
CHEMICAL CALCULATIONS Reaction Stoichiometry 9 periods $(\Downarrow 50$ periods)	- Use the coefficients in a balanced chemical equation to write the mole relationship for the molar amounts of any two substances appearing in a balanced chemical equation. - Perform calculations on equations relating the amounts of any two substances. Types of calculation include: mole to mole mole to mass mass to mole mass to mass mass to gas volume ${ }_{(S T P)}$ gas volume $e_{\text {sTp }}$ to mass gas volume ${ }_{\text {sTP }}$ to gas volume STTP	$\begin{gathered} \text { Chap } 30 \\ \text { p324- } 330 \end{gathered}$ Chap 31 p337-346 Chap 32 p353-357 [Other sources of problems can be found in: M\&W Set 28-37,p83]		Calculations Involving Equations Sheet Calculations from Equations Flowchart (An alternative Method) Activity 11 Decomposition of NaHCO_{3} Activity 12 Mole relationship between Cu and Fe Activity 13 Molar volume of H_{2}
Chemistry in Context 4 periods ($\downarrow 54$ periods) 13.5 weeks	Mining and mineral processing Western Australia. - State some of the minerals that are mined or processed in WA and be aware of their approximate location. Examples may include Bauxite, Iron ore (hematite, limonite), Gold, Nickel, Mineral sands. - Describe some mineral exploration techniques. Consider some of these, satellite imagery, aeromagnetic survey, seismic survey, RAB drilling, diamond drilling, surface sampling. - Describe mining methods and relate these to the type of ore body. Examples may include, Open pit mining, Strip mining, Dredging, Underground mining. - Describe mineral concentration methods. Consider some of these, froth flotation, gravity separation, magnetic separation, electrostatic precipitation. - Explain how Carbon reduction and Electrolysis are used to extract a metal. - Relate extraction techniques to metal activity and ease of reduction. - Demonstrate a detailed awareness of the mining activities carried out by one Western Australian mining company. (See above for aspects to consider.)	Chap 27 p274-279 p280-282 p282-286 p 302 Chap 26 p 265-271 Chap 28 p 289-308	Chap Quest 1-15 p287 REVISION FOR FINAL TEST Study Guide Test 1 p111 Test 2 p116 (omit 18-20, and 30)	Activity 14 Copper metal from copper ore OR Activity 15 Smelting Mining Research assignment Chemistry of Mining poster FINAL TEST

ATOMS AND IONS WORKSHEET

Use the words below to complete the description. Words can be used more than once.
positive
negative
reduction
electron cloud
neutron
proton
nucleus
oxidation
central
electron

Atoms have a \qquad (the \qquad region of the atom) that contains POSITIVE charged particles called \qquad and particles that have NO charge called \qquad .

Protons are TIGHTLY held within the atoms nucleus so protons cannot be gained or lost from the atom.

Atoms also contain NEGATIVE charged particles called \qquad , which are located in the \qquad . This is the biggest region of the atom, extending from the edge of the nucleus to the outer edge of the atom. Outer electrons are LOOSELY held to the atom and so they can be GAINED or LOST from the atom.
[ANALOGY of an atom: Bees / Beehive]

Atoms are normally NEUTRAL as the number
of \qquad equals the
number of \qquad .

An atom can become charged by gaining or losing one or more ELECTRONS (but never protons- they are too tightly held). An atom that has become charged is known as an ION.

Draw a clearly labelled 2D sketch showing the components of a typical atom

An ion may be positive or negative in charge.
If an atom gains one or more electrons, then the ion it forms will have a \qquad charge. The process of gaining one or more electrons is also known as r \qquad When an atom loses one or more of its electrons, then the ion it forms will have a \qquad charge. Chemists call this loss of electrons o \qquad .

Gaining and losing electrons are simultaneous actions that happen between at least two atoms at a time. ie for an atom to have gained an electron this electron must first be released from the electron cloud of some other atom.

ATOMS AND IONS WORKSHEET
COMPLETE THE FOLLOWING TABLE

Ion symbol	Number of protons in the ion	Number of electrons in the ion	Number of electrons gained or lost when forming the ion	Is this ion formed by reduction or oxidation?
Na^{+}				
Cl^{-}				
Mg^{2+}				
N^{3-}				
Al^{3+}				
O^{2-}				
	3	2		
	20	18		
	19			
	15	18		
	35		1 electron ?	reduction
	56		2 electron ?	oxidation
	26		2 electron ?	oxidation
	26		3 electron ?	oxidation
	16		2 electron ?	reduction

PROPERTIES AND USES OF ELEMENTS ASSIGNMENT:

Name \qquad Due \qquad

1. Classify the following elements as metals or non-metals.

HYDROGEN	HELIUM	FLUORINE	NEON	MAGNESIUM
SODIUM	LEAD	OXYGEN	ALUMINIUM	NITROGEN
SULFUR	CHLORINE	ARGON	CALCIUM	PROTACTINIUM
TITANIUM	CHROMIUM	COBALT	COPPER	GERMANIUM
KRYPTON	YTTRIUM	ZIRCONIUM	TUNGSTEN	POTASSIUM

2. What are the typical physical and chemical properties of metal elements, list five such properties, at least one must be a chemical property.
3. From the list of elements (question 1) choose three metals. For each metal chosen list two distinctly different uses for it and describe the properties that make the metal suited to the uses you have found out about. Indicate if the properties are physical or chemical.
4. Some elements are difficult to clearly classify as either metal or non metal. These are known as semi metals or metalloids. An element like this is silicon. Find out about the physical properties of silicon and hence explain why it is difficult to classify.

NAME \qquad

1. Classify the following elements as metals, non-metals, or semi metals (metalloids) germanium \qquad calcium \qquad sodium \qquad nitrogen \qquad zinc \qquad cobalt \qquad (6 marks)
2. Consider the elements with the properties indicated and classify these as metals, non-metals, or semi metals (metalloids), ie complete the last row of the table.

Property	element A	element B	element C	element D
malleable	yes	unknown	unknown	no
melting point	$330^{\circ} \mathrm{C}$	$1400^{\circ} \mathrm{C}$	$113{ }^{\circ} \mathrm{C}$	$3700^{\circ} \mathrm{C}$
produce hydrogen	yes	no	no	no
with acid	unknown	yes	no	unknown
brittle	silver solid	unknown	unknown	black solid
appearance	poor	poor	good	
electrical conductivity	unknown			
Classification				

(4 marks)
3. Name one metal, give two of its uses and indicate the property, which allows it to be used this way Metal \qquad

Use 1 \qquad
Relevant property
Use 2 \qquad
Relevant property (4 marks)

ACTIVITY 1: DISSOCIATION OF IONIC COMPOUNDS

AIM: To show ionic compounds dissociate (separate into ions) when dissolved in water.
EQUIPMENT: Ten different stations around the room.
Ten stations containing one of the following: solid samples of ammonium nitrate, sodium sulfate, copper nitrate, copper sulfate, ammonium chloride, sodium hydroxide, 50 mL of distilled water, 50 mL of very dilute sodium chloride solution, 50 mL of dilute sodium chloride solution, 50 mL of concentrated sodium chloride solution.
Plus 100 mL beaker, stirring rod, power pack, 6 V globe and holder, 3 electrical leads, distilled water, spatula, stainless steel electrodes assembly.

Procedure: take care!! Wear safety glasses

1. Go to one of the ten stations and set up the equipment as shown in the diagram below.

2. At the stations with solids: Dissolve a small amount of solid in 50 mL of distilled water.

Test whether the solution conducts electricity when the voltage is adjusted to 6 volts, DC. The brightness of the globe is related to the concentration of the ions (charged atoms or groups of atoms) in the solution.
3. At the stations with no solids:Pour 50 mL of the solution or distilled water into the beaker and then test whether the solution conducts electricity when the voltage is adjusted to 6 volts, DC.
4. Draw up a table to record your results as follows:

Ionic Solid or solution	Does it conduct electricity?	Ionic Equation to show dissociation into ions
e.g. $\mathrm{NaCl}_{(\mathrm{s})}$	Yes	$\mathrm{NaCl}_{(\mathrm{s})} \rightarrow \mathrm{Na}^{+}{ }_{(\text {aad })}+\mathrm{Cl}_{(\text {aad })}$

Questions:

1. Why does concentrated $\mathrm{NaCl}_{(\mathrm{aq})}$ cause the globe to glow brighter than very dilute $\mathrm{NaCl}_{(\mathrm{aq})}$?
2. Why does the globe not glow when distilled water only is used?
3. $\quad \mathrm{NaCl}_{(\mathrm{s})}$ is made up of ions and does not conduct electricity. $\mathrm{NaCl}_{(\mathrm{aq})}$ is made up of ions and water molecules and does conduct electricity. Try to explain this observation.

PREDICTION: In a few words write answers to the above questions.

THE TEST: Test your prediction by performing the following activity.

EQUIPMENT:

Strip of chromatography paper or filter paper
Microscope slide
Two electrical leads with alligator clips
Power pack
Popstick spatula
Copper(II) sulfate crystals (crushed) CuSO_{4}
Potassium permanganate crystals (crushed) KMnO_{4}

PROCEDURE: TAKE CARE!! WEAR SAFETY GLASSES

1. Place the strip of chromatography or filter paper on a microscope slide. Hold it in place with the alligator clips as shown.

2. Moisten with a few drops of tap water. (Do not soak it!)
3. Connect the leads to a 12 V DC power supply.
4. Using the popstick spatula, place crystals of copper sulfate and potassium permanganate on the paper as shown.
5. Switch on the power pack and observe any changes that occur.

OBSERVATIONS:

QUESTIONS: What can you conclude about the charge carried by metal and non-metallic ions?

NAMING AND WRITING FORMULAS FOR IONIC COMPOUNDS

EXERCISE 1

For each of the following ionic compounds, identify the cation and the anion (by symbol and by name of the compound.

FORMULA	CATION	ANION	NAME
KCl	K^{+} Potassium	Cl^{-} Chloride	Potassium chloride
$\mathrm{NH}_{4} \mathrm{OH}$			
ZnCl_{2}			
$\mathrm{Al}(\mathrm{OH})_{3}$			
CuSO_{4}			

ExERCISE 2

Assume that $\mathrm{A}^{+}, \mathrm{B}^{2+}, \mathrm{C}^{3+}, \mathrm{DE}^{2+}$ and FG_{4}^{+}are five cations and $\mathrm{V}^{-}, \mathrm{W}^{2-}, \mathrm{X}^{3-}$ and YZ^{-}are four anions. Write the formulas of the compounds that would result, if each of these ions were paired with one another. Complete the table below.

	\mathbf{V}^{-}	$\mathbf{W}^{\mathbf{2 -}}$	$\mathbf{X}^{\mathbf{3 -}}$	$\mathbf{Y} \mathbf{Z}^{-}$
\mathbf{A}^{+}				
$\mathbf{B}^{\mathbf{2 +}}$				
\mathbf{C}^{3+}				
$\mathbf{D E}^{\mathbf{2 +}}$				
$\mathbf{F G}_{4}{ }^{+}$				

ExERCISE 3

Write the ionic formulas for the following compounds in the spaces provided.

Potassium bromide \qquad Calcium hydroxide \qquad
Sodium hydroxide \qquad
Calcium chloride \qquad

Potassium nitrate
Calcium nitrate
\qquad
\qquad

AIM: To test the solubility of ionic compounds.
BACKGROUND: When some ionic solutions are mixed, the ions sometimes react to produce insoluble (or sparingly soluble) solids that are called precipitates.
EQUIPMENT: Dropper bottles of $0.1 \mathrm{~mol} \mathrm{~L}^{-1}$ solutions of:
sodium chloride barium chloride
sodium carbonate copper(II) nitrate
sodium nitrate
sodium hydroxide sodium sulfate
lead nitrate
calcium nitrate
magnesium nitrate
silver nitrate (*** Be very careful as it stains your skin for about 2 weeks)
Plastic sheets to put drops on.
Teacher to supply worksheet (see next page)

PROCEDURE: TAKE CARE!! WEAR SAFETY GLASSES - Be very careful with silver nitrate solution.

1. Place the plastic sheet over the worksheet.
2. In the squares put a couple of drops of each solution and see if a precipitate is produced and its colour.
3. Record your results.

QuEstions:

1. What families of chemicals are insoluble and what are the exceptions to the rule? (families are things like chlorides, carbonates, sulfates etc)
2. What families of chemicals are soluble and what are the exceptions to the rule? (families are things like chlorides, carbonates, sulfates etc)

PRECIPITATION REACTIONS WORKSHEET

X	Sodium chloride $\mathrm{NaCl}_{(a q)}$	Sodium carbonate $\mathrm{Na}_{2} \mathrm{CO}_{3(a \mathrm{aq})}$	Sodium nitrate $\mathrm{NaNO}_{3(a \mathrm{a})}$	Sodium hydroxide $\mathrm{NaOH}_{(a q)}$	$\begin{gathered} \text { Sodium } \\ \text { sulfate } \\ \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})} \end{gathered}$
Barium chloride $\mathrm{BaCl}_{2(a \mathrm{aq})}$					
$\begin{aligned} & \text { Copper(II) } \\ & \text { nitrate } \\ & \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} \end{aligned}$					
$\begin{gathered} \text { Lead } \\ \text { nitrate } \\ \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} \end{gathered}$					
$\begin{gathered} \text { Calcium } \\ \text { nitrate } \\ \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} \end{gathered}$					
Magnesium nitrate $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}$					
Silver nitrate $\mathrm{AgNO}_{3(a q)}$					

ACTIVITY 4: MOLECULAR MODELS ACTIVITY

AIM: To use molecular model kits to show the structure of covalent molecular substances.

BACKGROUND:

Covalent molecular substances are made up of molecules. The atoms in the molecule bond with each by sharing electrons so that a full or stable outer or valence shell is obtained. This usually means 8 electrons in the outer shell.

EQUIPMENT:

Molymod 001: Introductory ORGANIC Molecular Model Set or
Molymod 009: Student Set: INORGANIC ORGANIC Molecular Model Set

Procedure:

1. Take note of the colour of the atoms. Carbon - black; hydrogen - white; nitrogen - blue; oxygen - red; chlorine - green; sulfur - yellow.
2. Use the coloured spheres and grey links to represent the following molecular substances. Use the longer flexible grey links when you have to form double or triple bonds.
3. Draw up a table to illustrate your results. An example is given below.

NAME	MOLECULAR FORMULA	STRUCTURAL FORMULA	USE
e.g. acetic acid			Vinegar for preserving and flavouring foods.

QUESTION:

1. How many covalent bonds can the following atoms form? Hydrogen \qquad ; carbon \qquad ; oxygen \qquad ; nitrogen \qquad ; chlorine \qquad ; phosphorus \qquad .

FORMULA OF COMMON MOLECULAR SUBSTANCES [ELEMENTS AND COMPOUNDS]

Substance	Formula	
Oxygen	O_{2}	element, each molecule has two O atoms tightly bonded, colourless gas
Nitrogen	N_{2}	
Fluorine	F_{2}	
Chlorine	Cl_{2}	
Bromine	Br_{2}	
Iodine	I_{2}	
Water	$\mathrm{H}_{2} \mathrm{O}$	
Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	
Carbon dioxide	CO_{2}	
Carbon monoxide	CO_{2}	
Hydrochloric acid	HCl^{2}	
Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	
Nitric acid	HNO_{3}	
Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	
Acetic acid	$\mathrm{CH}_{3} \mathrm{COOH}^{2}$	
Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	
Sulfur dioxide	SO_{2}	
Sulfur trioxide	SO_{3}	
Nitrogen monoxide	NO_{2}	
Nitrogen dioxide	NO_{2}	
Dinitrogen tetroxide	$\mathrm{N}_{2} \mathrm{O}_{4}$	
Hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}$	
Ammonia	NH_{3}	
Methane	CH_{4}	

ACTIVITY 5: CHEMICAL REACTIONS ~ACIDS AND METALS

AIM: To identify any patterns of behaviour for the reaction between acids and metals by looking for similarities in the reaction between a variety of acids (sulfuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}$, hydrochloric acid HCl) and metals (zinc, calcium, iron, copper, magnesium).
APPARATUS: $\quad 4.0 \mathrm{~mol} \mathrm{~L}^{-1}$ solutions of sulfuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}$ and hydrochloric acid HCl (in dropper bottles), small pieces of zinc, calcium, iron, (steel wool) copper, magnesium), two test tubes (one semi micro that will fit into a normal sized test tube), wax taper, matches.

METHOD: Take Care ! ! ! Wear eye protection, acid splashed into an eye is very painful!

1. Place 2 small pieces of calcium into a small test tube (you will need to remove the oil using a paper towel).
2. From a dropper bottle add 5 mL of $\mathrm{HCl}(\mathrm{aq})$.
3. Place a second (larger) test tube over the reaction test tube to collect any gas produced.
4. When you think you have collected sufficient gas (this depends upon the rate of reaction). You can try a pop test to see if any hydrogen gas was formed.
5. Repeat the procedure with any acid metal combinations from the available materials.

RESULTS:

Metal - Acid combination	Observations- what happens in the reaction test tube	Pop test result
Ca and HCl		

QUESTIONS \& CONCLUSIONS: (Show your working for any calculations)

1. In which cases did the pop test indicate that hydrogen gas formed as a result of the acid metal reactions?
2. Where you found hydrogen gas was formed then the reaction also produces a salt. What will be the chemical formula of the salt for each of your acid metal reactions? Remember a salt is the compound formed when the hydrogen of an acid is replaced by a metal element.

ACTIVITY 6: CHEMICAL REACTIONS ACIDS \& CARBONATES

AIM: To identify any patterns of behaviour for the reaction between acids and carbonate or hydrogen carbonate compounds by looking for similarities in the reaction between a variety of acids (nitric acid, HNO_{3}, sulfuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}$, hydrochloric acid HCl) and carbonates or hydrogen carbonates (sodium carbonate $\mathrm{Na}_{2} \mathrm{CO}_{3}$, copper carbonate CuCO_{3}, calcium carbonate CaCO_{3} sodium hydrogen carbonate, NaHCO_{3}).
APPARATUS: Gas preparation and delivery apparatus (see sketch), $1.0 \mathrm{~mol} \mathrm{~L}^{-1}$ solutions of nitric acid HNO_{3}, sulfuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}$, hydrochloric acid HCl (in dropper bottles), jars of sodium carbonate $\mathrm{Na}_{2} \mathrm{CO}_{3}$, copper carbonate CuCO_{3}, calcium carbonate CaCO_{3}, sodium hydrogen carbonate NaHCO_{3}, lime water (60 mL per group).

METHOD: Take Care !!! USE SAFETY GLASSES - acids are dangerous

The limewater is easily neutralised by the slightest contact with acid. Avoid the acid bubbling over through the delivery tube to the limewater.
Be organised, step one and two need to be completed quickly and carefully as the reaction is fast and can be over in a few seconds.
Safety, wear eye protection, acid splashed into an eye is very painful!

1. Place a small amount of calcium carbonate CaCO_{3} into the test tube and add sufficient HCl to cover the marble chips.
2. Fit the delivery tube and bubble the gas produced into a second test tube containing a few mL of limewater.
3. Rinse both test tubes and repeat with any other combinations of acid and carbonate. Record all observations as you go.

CaCO_{3} and $\mathrm{HCl}_{(\mathrm{aq})}$
limewater

RESULTS:

Acid carbonate combination	Observations- what happens in the reaction test tube	Effect on limewater
CaCO_{3} and HCl		

QUESTIONS:

1. What gas is produced when an acid and carbonate or hydrogen carbonate is reacted?
2. In each of these reactions water and a salt is also produced. Determine the chemical formula of the salt for each of your acid and carbonate or hydrogen carbonate combinations. Remember a salt is the compound formed when the hydrogen of an acid is replaced by a metal element.

ACTIVITY 7: FANTASTIC FUN WITH CO2

TRY THIS: Make your own fizzy orange flavoured soft drink.

WhAt YOU NEED:

One clean 100 mL measuring cylinder, $85-90 \mathrm{~mL}$ of orange cordial concentrate (Sunquick), 3.9 g citric acid $\left(\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} . \mathrm{H}_{2} \mathrm{O}\right), 4.2 \mathrm{~g}$ bicarbonate of soda (sodium bicarbonate, NaHCO_{3}), a 600 mL soft drink bottle with screw cap (must be soft drink bottle), two electronic balances (measuring $\pm 0.1 \mathrm{~g}$), safety glasses.
PROCEDURE: Take Care !!! Considerable pressure will be produced inside your drink bottle. Safety glasses must be worn at all times just in case

1. Using the clean measuring cylinder provided measure $85-90 \mathrm{~mL}$ of orange cordial concentrate and add this to your soft drink bottle
2. Add tap water so that a space of around 100 mL volume remains inside your soft drink bottle.
3. Measure, on a clean piece of scrap paper, 4.2 g of sodium hydrogen carbonate. Add this to your soft drink bottle. Safety glasses !!
4. Measure, on a clean piece of scrap paper, 3.9 g of citric acid. Loosely wrap this in a small piece of glad wrap (say 5 cm by 15 cm).
5. Now add the citric acid wrapped in glad wrap to your drink mixture and quickly screw on the top. Shake gently to release the citric acid. Now watch as the fizz gets underway.
6. Wait a few minutes, unscrew and enjoy !!!

CHALLENGE QUESTIONS: CAN YOU ANSWER ANY OF THESE?

1. Write an equation for the reaction between citric acid (a triprotic acid like $\mathrm{H}_{3} \mathrm{PO}_{4}$) and NaHCO_{3} ?
2. Many students say the orange soft drink they have made tastes a little salty, like staminade or a sports drink. Can you account for this salty taste?
3. Why don't most fizzy drinks have a salty taste?
4. You probably had around 100 mL space inside your sealed drink bottle, estimate the pressure in this bottle when the reaction is over. You may assume one third of the CO_{2} is dissolved in the drink bottle

ACTIVITY 8: CHEMICAL REACTIONS ~ACIDS AND BASES

AIM: To identify any patterns of behaviour for the reaction between acids and bases by looking for similarities in the reaction between a variety of acids (nitric acid, HNO_{3}, hydrochloric acid HCl) and bases (barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}$, sodium hydroxide NaOH , calcium hydroxide $\mathrm{Ca}(\mathrm{OH})_{2}$).
EQUIPMENT: $\quad 1.0 \mathrm{~mol} \mathrm{~L}^{-1}$ solutions of nitric acid, HNO_{3}, sulfuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}$, sodium hydroxide NaOH and barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}$, (in dropper bottles), a jar of calcium hydroxide $\mathrm{Ca}(\mathrm{OH})_{2}$, an electronic balance ($\pm 0.1 \mathrm{~g}$) universal indicator and an indicator colour chart.
BACKGROUND: Universal indicator can be used to test the acidity of a solution. If a solution is neutral the indicator colour is green, yellow through to red indicates increasing acidity and blue to purple indicates an increasingly basic solution.
When an acid and base react they are said to neutralise each other. The products of the neutralisation reaction are water and a salt. As the products are effectively* neutral then the reaction mixture of an acid with a base should be close to neutral when the reaction between the acid and base is complete.
[* Some salts are slightly acidic or basic.]

PROCEDURE: Take Care !!!

Wear eye protection, acid or base splashed into the eye is very painful!

1. Use a clean measuring cylinder to measure 15 mL of distilled water and place this into a clean 100 mL conical flask. Add 4 drops of universal indicator. Record the indicator colour.
2. Add 20 drops (try to keep these uniform in size) of $1.0 \mathrm{~mol} \mathrm{~L}^{-1}$ nitric acid, HNO_{3} solution. Record the indicator colour.
3. Add sufficient sodium hydroxide, NaOH to neutralise your HNO_{3} solution (use the indicator colour as a guide). Swirl the solution as you go and add the NaOH solution carefully so that you don't have excess sodium hydroxide. Record the number of drops used.
$\begin{array}{ll}\text { 4. Repeat steps } 1 \text { to } 3 \text { using } & \begin{array}{l}\text { (a) } 1.0 \mathrm{~mol} \mathrm{~L}^{-1} \text { solutions of } \mathrm{HNO}_{3} \text {, and } \mathrm{Ba}(\mathrm{OH})_{2} \\ \\ \\ \\ \text { (b) } 1.0 \mathrm{~mol} \mathrm{~L}^{-1} \text { solutions of } \mathrm{H}_{2} \mathrm{SO}_{4} \text { and } \mathrm{NaOH} \\ \text { (c) } 1.0 \mathrm{~mol} \mathrm{~L}^{-1} \text { solutions of } \mathrm{H}_{2} \mathrm{SO}_{4} \text { and } \mathrm{Ba}(\mathrm{OH})_{2}\end{array}\end{array}$
4. Carefully weigh 0.20 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ into a 100 mL conical flask then add 10 mL of water to it. Record the appearance of the mixture.
5. Add two drops of universal indicator and record its colour.
6. Slowly add HNO_{3} solution until the mixture is slightly acidic. Record the change in appearance of your mixture as you add the HNO_{3} solution (apart from the indicator colour change).

Questions:

1. Write an equation for each of the reactions occurring in your experiments?
2. Account for the appearance of your $\mathrm{Ca}(\mathrm{OH})_{2}$ water mixture in step 6 .
3. Account for the change in appearance of your $\mathrm{Ca}(\mathrm{OH})_{2}$ water mixture in step 7 .

IS IT AN ACID OR A BASE?

BACKGROUND: Oxides and hydroxides are compounds that contain O and OH respectively. When added to water some of these compounds turn water ACIDIC while others may turn it BASIC and some have no effect at all. The clue is in the formula, can you find it?

WHAT TO DO: Write chemical formula for the following oxides and hydroxides in the correct column. Can you see the clue in the formula that tells whether the oxide or hydroxide is acidic (A) or basic (B)?

potassium oxide (\mathbf{B})	iron(II) oxide (\mathbf{B})
manganese(II) hydroxide (\mathbf{B})	phosphorous pentoxide (A) sulfur trioxide (\mathbf{A})
copper oxide (\mathbf{B})	

sulfur dioxide (\mathbf{A})	nitrogen dioxide (\mathbf{A})
sodium hydroxide (\mathbf{B})	calcium hydroxide (\mathbf{B}) nickel(II) hydroxide (\mathbf{B}) barium oxide (\mathbf{B}) silver oxide (\mathbf{B})
carbon dioxide (\mathbf{A}) barium hydroxide (\mathbf{B}) carbon hydroxide (carbonic acid) $\mathrm{CO}(\mathrm{OH})_{2}(\mathbf{A})$	

Acidic oxide	Acidic hydroxide	Basic oxide	Basic hydroxide

FOLLOW UP:

1. Can you see it? If so what's the clue in the formula that tells us if the oxide/hydroxide is acidic or basic.
2. Write chemical formula for the following and using your hypothesis classify them as acidic or basic.

Name	Formula	Acidic or basic?
potassium hydroxide		
magnesium oxide		
sulfur trioxide		
sodium hydroxide		
dinitrogen tetroxide		
lithium oxide		

3. Some oxides and hydroxides like $\mathrm{Al}_{2} \mathrm{O}_{3}$ and ZnO are said to be AMPHOTERIC, use your text book to find out what this means.
4. The following compounds are mixed with water and then small pieces of red and blue litmus are added to the mixture. What colour does the litmus become?

calcium hydroxide	sodium oxide	sulfur dioxide	sodium hydroxide
nitrogen dioxide	cobalt hydroxide	carbon dioxide	phosphorous pentoxide

CHEMICAL REACTIONS ~ PREDICTING PRODUCTS

1. Acid - Metal Reactions

Atoms from the metal replace the hydrogen atom(s) contained in the acid. The resulting substance is called a salt. Hydrogen gas, formula H_{2}, is also produced. Use this idea to write formulas for the products formed when the following acids and metals react.

REACTANTS

1. $\mathrm{Zn}+\mathrm{HCl}$
2. $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4}$
3. $\mathrm{Zn}+\mathrm{HNO}_{3}$
4. $\mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4}$
5. $\mathrm{Fe}+\mathrm{HCl}$

PRODUCTS

\qquad
\qquad
\qquad
\qquad
\qquad
2. Reactions involving "Acids \& Bases", or "Acids \& Carbonates"
(a) Acids, bases and carbonates may be considered to consist of a pair of ions. In each of the following, determine what these ions are then write their symbols.
The first two are completed for you.

1. $\mathrm{NaOH}, \mathbf{N a}^{+}$and $\mathbf{O H}^{-}$
2. $\mathrm{Na}_{2} \mathrm{CO}_{3}, \quad \mathrm{Na}{ }^{+}$and $\boldsymbol{C O}_{3}{ }^{2-}$
3. $\mathrm{Ca}(\mathrm{OH})_{2}$, \qquad
4. ZnCO_{3}, \qquad
5. $\mathrm{Al}(\mathrm{OH})_{3}$, \qquad
6. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, \qquad
7. HCl ,
8. $\mathrm{H}_{2} \mathrm{SO}_{4}$,
9. HNO_{3}, \qquad
10. KOH , \qquad
11. NaHCO_{3}, \qquad
12. $\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}$, \qquad
(b). Determine the products formed when each of the following pairs of compounds react together. Do this by swapping the pair of ions in each compound to work out the products that form. Use valencies to write correct formula for the products. Also if $\mathrm{H}_{2} \mathrm{CO}_{3}$ is a product it is actually quite unstable and quickly decomposes to form $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} so if $\mathrm{H}_{2} \mathrm{CO}_{3}$ is the product then actually $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} are formed instead. Notice $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}=$ $\mathrm{H}_{2} \mathrm{CO}_{3}$. Also HOH (hydrogen hydroxide) is usually written as ??????
Complete the table by writing formula for the reactants or products in the space provided.

REACTANTS	PRODUCTS	REACTANTS	PRODUCTS
1. $\mathrm{NaOH}+\mathrm{HCl}$		$9 . \mathrm{NaHCO}_{3}+\mathrm{HCl}$	
2. $\mathrm{KOH}+\mathrm{HNO}_{3}$		10.	$\mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$3 . \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3}$		11.	$\mathrm{ZnSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
$4 . \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4}$		$12 . \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}$	
$5 . \mathrm{MgCO}_{3}+\mathrm{HCl}$		13.	$\mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
6. $\mathrm{Zn}(\mathrm{OH})_{2}+\mathrm{HCl}$		$14 . \mathrm{ZnHCO}_{3}+\mathrm{HNO}_{3}$	
$7 . \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{HNO}_{3}$		15.	${\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}}^{\left(8 . \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{CaCO}_{3}\right.}$

GENERAL REACTIONS WORKSHEET

For each of the following reactions predict the products or reactants as required. Write the correct formula for each species and then balance the complete equation.

1. $\mathrm{HC} 1+\mathrm{MgO} \rightarrow$ \qquad $+$ \qquad
2. $\quad+\quad \rightarrow \quad \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
3. $\quad \mathrm{MgCO}_{3} \xrightarrow{\text { Heat }}$ \qquad $+$ \qquad
4. $\mathrm{HC1}+\mathrm{KOH} \rightarrow$ \qquad
\qquad
5. $\mathrm{HNO}_{3}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
\rightarrow \qquad $+\quad+$ \qquad
6. \qquad
\qquad $\rightarrow \quad \mathrm{AlCl}_{3}$ $+\quad \mathrm{H}_{2}$
7. \qquad $+$ $\rightarrow \quad \mathrm{CaSO}_{4}$
$+\mathrm{CO}_{2}+$ $\mathrm{H}_{2} \mathrm{O}$
8. NaHCO_{3} \square
Heat \qquad $+$ \qquad $+$ \qquad
9. \qquad $+$ $\rightarrow \quad \mathrm{Na}_{2} \mathrm{SO}_{4} \quad+$
$+\quad \mathrm{H}_{2} \mathrm{O}$
10. $\mathrm{HC} 1+\mathrm{Sn}\left(\mathrm{HCO}_{3}\right)_{2}$
\rightarrow \qquad $+$ \qquad $+$ \qquad
11. $\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow$ \qquad $+$
12.

$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Mg} \rightarrow$ \qquad $+$ \qquad
13. \qquad $+$ $\rightarrow \mathrm{CaCl}_{2}$ $+\quad \mathrm{H}_{2}$
14. $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ \qquad $+$ \qquad $+$ \qquad
15. \qquad
\qquad $\rightarrow \quad \mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
16. \qquad
\qquad $\rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
17. $\mathrm{LiOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow$ \qquad $+$ \qquad
18. $\mathrm{Al}+\mathrm{HNO}_{3}$ \qquad $+$ \qquad
19. \qquad $+$ \qquad $\rightarrow \mathrm{CuCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
20. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{KOH} \rightarrow$ \qquad $+$ \qquad

GENERAL REACTIONS SUMMARY

Complete the following list of common chemical reactions.

1. ACID + METAL HYDROXIDE \rightarrow \qquad
eg
2. ACID + METAL OXIDE \rightarrow \qquad $+$ \qquad
eg
3. ACID + METAL CARBONATE \rightarrow \qquad $+$ \qquad $+$ \qquad
eg
4. ACID + METAL HYDROGENCARBONATE \rightarrow \qquad $+$ \qquad $+$ \qquad eg
5. ACID + METAL \rightarrow \qquad $+$ \qquad
eg
6. METAL CARBONATE HEAT \qquad $+$
eg
7. METAL HYDROGENCARBONATE HEAT
eg
8. ACID + BASE \rightarrow \qquad $+$ \qquad
eg
9. METAL + OXYGEN
eg
10. NON-METAL + OXYGEN \rightarrow
eg

REVISION ASSIGNMENT - ATOMS AND FORMULAE
 NAME:
 \qquad /40 MARKs

1. Two different types of atoms are isolated and their atomic and mass numbers are identified.

If the atoms can be represented as ${ }_{38}^{88} \mathrm{X}$ and ${ }_{53}^{127} \mathrm{D}$
Determine (using a Periodic Table where necessary):
(a) Number of protons in each type of atom

X: \qquad

D: \qquad
(b) Number of valence electrons of each atom

X \qquad
D \qquad
(c) the ion that each atom would be expected to produce if they reacted together.
\qquad
(d) the formula of the compound made by reacting X and D together.
\qquad (1)
2. Explain the difference between a period (or row) and a group in the Periodic Table. What do each of these tell us about the properties of elements.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(2)
3. What is the difference between a MONATOMIC ION and a POLYATOMIC ION?
\qquad
4. Complete the table by putting in the formulas. The first one has been done for you.

	Negative Ions					
Positive Ions	Chloride	Sulfide	Hydroxide	Nitrate	Sulfate	Phosphate
Potassium	$\mathbf{K C l}$					
Calcium						
Tin (II)						
Lead						
Iron (III)						
Ammonium						

5. Correct the following formulae if necessary

Iron II carbonate	$\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
Sodium chloride	NaCl_{2}
Copper II oxide	$\mathrm{Cu}_{2} \mathrm{O}$
Barium hydroxide	BaOH_{2}
Iron II sulfate	FeSO_{4}
Sodium hydrogencarbonate	NaHCO_{3}
Iron III chloride	FeCl
Silver carbonate	AgCO_{3}

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Iron III chloride
AgCO_{3}
6. Give the chemical names for the following formulae.

\[

\]

ADVANCED CHEMISTRY REVISION EXERCISE

1. Define and give an example of each of the following:
(a) element
(b) ion
(c) salt
(d) indicator
(e) molecule
(f) compound
(g) atom
(h) isotope
2. Write the formula for the following substances:

oxygen	nitrogen	chlorine	ammonia	carbon dioxide
water	sulfuric acid	nitric acid	hydrochloric acid	iodine
sulfur dioxide	dinitrogen pentoxide	aluminium sulfate	zinc nitrate	
calcium phosphate	iron(II) hydroxide	chromium (III) nitrate		

3. Describe in terms of electron transfer and ion formation the ionic bond that results when Na and S react together to form $\mathrm{Na}_{2} \mathrm{~S}$.
4. Name four metals and give a use for each metal.
5. Sketch the two isotopes of oxygen ${ }_{8}^{16} \mathrm{O}$ and ${ }_{8}^{18} \mathrm{O}$ showing the sub-atomic particles contained in each isotope.
6. Copy and complete the following table:

Particle	Number of Protons	Number of Neutrons	Number of Electrons	Atomic No.
${ }_{7}^{14} \mathrm{~N}$				
23 $11 \mathrm{Na}^{+}$				
35 $17 \mathrm{Cl}^{-}$		15	10	
	14			

7. Classify the following elements as metals, non metals or metalloids.
$\mathrm{Na} \quad \mathrm{Zn} \quad \mathrm{S}$
O
C $\quad \mathrm{Fe}$
Ca
Cl
I
K P
8. Describe three tests you could use to determine if an unknown solution contains an acid. What results would you expect if it did.
9. Write the formula for any substances that would be produced when the following pairs of substances react with each other.
(a) $\quad \mathrm{Mg}$ and HCl
(b) $\quad \mathrm{Mg}$ and O_{2}
(c) Al and $\mathrm{H}_{2} \mathrm{SO}_{4}$
(d) $\quad \mathrm{K}_{2} \mathrm{CO}_{3}$ and HCl
(e) ZnO and HNO_{3}
(f) $\quad \mathrm{NaOH}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$
10. Copy and complete the general equations listed here.
(a) ACID + METAL \rightarrow \qquad $+$ \qquad
(b) ACID + BASE $\quad \rightarrow$ \qquad
\qquad
(c) ACID + CARBONATE \rightarrow \qquad $+$ \qquad $+$ \qquad
(d) METAL + OXYGEN \rightarrow \qquad
(e) ACID + METAL OXIDE \rightarrow \qquad $+$ \qquad
(f) METAL CARBONATE \rightarrow (with heat) \qquad $+$ \qquad
11. Give the name or formula of the following:
(a) a green coloured metal carbonate
(b) a metal that is not silvery grey in colour \qquad
(c) a metal that does not produce hydrogen gas when it is reacted with dilute acid \qquad
(d) a gas used in treating commercial swimming pools
(e) a compound used to clear blocked drains (common name is caustic soda) \qquad
(f) an acid used to clean brickwork \qquad
(g) an acid used in car batteries \qquad
(h) an acid found in cool drinks \qquad
(i) an acid that makes up about $3-5 \%$ of vinegar \qquad
(j) a positively charged polyatomic ion \qquad
(k) a blue coloured compound \qquad
(l) a solution that stains your fingers brown when exposed to sunlight \qquad
(m)the gas used in bunsen burners in the laboratories \qquad
(n) a gas used in portable barbecues and camping stoves \qquad
(o) three metals that are found in ores less than 150 km from Perth \qquad
\qquad

ramy

OPEN INVESTIGATIONS are experiments, activities or investigations where you have to solve a problem by designing your own experiment.

Some of the assessment for Advanced Chemistry is on your ability to conduct investigations. You have to undertake a Major Science Investigation in a group of two or three where you can choose from a list of investigations or select your own topic to research.

Rather than throw you in at the deep end we will do a sample open investigation as a class so that when you get the actual problem to investigate you will have a framework to assist you.

In OPEN INVESTIGATIONS you are given a problem to investigate and you have to design and conduct your own experiments.

For example: Investigating how a ball bounces.

- You could alter the heights from which you dropped a ball onto a surface.
- Or you could use three different types of balls and drop them from the same height.
- Or you could drop the same ball from the same height but falling on different surfaces.

You will have to do a major science investigation in a small group which will earn marks towards this unit and test your ability in the Investigating outcome in Science.

OPEN INVESTIGATIONS - the continuing story!

At the end of this topic you will have to do a science investigation which is worth marks towards this topic.

Therefore we are going through a trial open investigation and modelling the PLANNING, CONDUCTING, PROCESSING DATA and EVALUATING steps by using the INVESTIGATION GUIDE SHEETS.

BACKGROUND INFORMATION TO GET YOU THINKING:

Some reactions happen quickly, others slowly.

Exploding	Burning	Smouldering	Clotting	Fermenting	Rusting
Dynamite	Paper	Wood	Blood	Wine	Car

To cook a potato slowly

To cook a potato quickly

Sometimes you may want to change the rate of reaction. For example, the rate of cooking in the kitchen can be changed. This is done in a number of ways.

Try to spot three variables that have been changed in the two unlabelled pictures to speed up the cooking process. You are going to investigate these variables on your own in your groups.

MACARONI TRIAL INVESTIGATION

Macaroni can be cooked using a Bunsen burner and some water. Your teacher, with your assistance, will lead you through the Investigation Guide to test the hypothesis that each of the three variables in the picture above affects the cooking time of macaroni.
It is very important that you take care in the planning stage.
You might like to take 15 pieces of macaroni.
Make sure you have a copy of the Key Terms Used in Science Investigations Sheet and the Investigation Guide to write down what you, the class and your teacher work out.
You should only change one variable at a time. Can you think why?

1. You will have to decide:
a) Which independent variable is investigated first.
b) How to control the other variables for a fair comparison.
c) How to tell when the piece of macaroni is cooked (measurement)
2. You will have to write out an outline of your plan in your book. Include a diagram.
3. Carry out your investigation. Your teacher may decide to give one variable to each group to investigate and share findings at the end rather than do all three investigations.
4. Present your results in a suitable written form (table, chart, graph etc)
5. In evaluating your investigation you could ask yourself:
a) What parts of your investigation went well? Why?
b) What parts did not go well?
c) Is there anything you would do differently if you started again?

KEY TERMS USED IN SCIENCE INVESTIGATIONS

HYPOTHESIS:

A possible idea to be tested in an investigation stated as the relationship between the independent and dependent variables. e.g. The more fertiliser you put on wheat the faster it grows. You can write down the hypothesis using an IF THEN statement:
e.g. IF you put more fertiliser on wheat THEN it will grow faster.

VARIABLE:

A factor that can be changed, kept the same or measured in an investigation.

INDEPENDENT VARIABLE:

The variable that is changed in an investigation to see what effect it has on the dependent variable.

e.g. the amount of fertiliser on plants.

DEPENDENT VARIABLE:

The variable that changes in response to changes in the independent variable. Often it is the variable that is measured in an experiment.
e.g. the growth of the plants after different amounts of fertiliser have been added.

CONTROLLED VARIABLE:

A variable that is kept the same throughout the investigation so you can be sure that it is the change in the independent variable (amount of fertiliser) that is causing the change in the dependent variable (growth of the plants).
An example of controlled variables would be the amount of water added to each pot, the type of soil, the amount of soil etc.

PRELIMINARY TRIALS:

These represent a trial run of the procedure used to fine tune the method and measurement techniques before doing the actual experiment and collecting the data.

REPEAT TRIALS:

These are conducted to collect more data and to eliminate any errors that might have been present if only one trial was used.
e.g. if you were investigating the brakes on a bike you would do many trials and average the results.

STUDENT NAME: \qquad DATE: \qquad

OTHER MEMBERS OF YOUR GROUP:

The abbreviations at the end of each question or statement have the following meanings:

$\mathbf{P L}$	refers to	Planning Investigations
\mathbf{C}	refers to	Conducting Investigations
$\mathbf{P D}$	refers to	Processing Data
\mathbf{E}	refers to	Evaluating Findings

This should assist you in identifying the areas that require improvement in order to reach the next Level.

What are you going to investigate? What is your hypothesis?
\qquad
\qquad
\qquad
\qquad

What do you think will happen? Explain why? PL
\qquad
\qquad
\qquad
\qquad
\qquad
TABLE OF VARIABLES: PL

What will I keep the SAME?	What will I CHANGE?	What will I MEASURE?
CONTROLLED VARIABLES	INDEPENDENT VARIABLE	DEPENDENT VARIABLE

\qquad
\qquad
\qquad
\qquad

What equipment will you need?

\qquad
\qquad
\qquad
\qquad
List the steps in your procedure or method. PL
\qquad

Do the investigation.
What happened? Describe your observations and record your results.
Note: You may display your numerical data as a table.

Can your results be represented as a graph?

What do your results tell you? (What is your conclusion?)
Are there any patterns or trends in your results?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Can you EXPLAIN the patterns or trends in your results?
Try to use some SCIENCE IDEAS to help explain what happened?
Are there any changes that would have IMPROVED the way the investigation or experiment was conducted?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

OPEN INVESTIGATION ASSESSMENT

This investigation is to be used to determine your mark for the Investigating outcome in Science. You can EITHER do the investigation below OR you can choose one of the more challenging topics on the next page.

The investigation is on factors affecting the rate of chemical reactions. You are required to investigate three variables which could change the speed of reaction between hydrochloric acid and marble chips (calcium carbonate)

As you know one of the products formed is a gas which is released into the atmosphere. The faster the reaction, the more quickly the gas is produced and given off. So a faster reaction loses solid mass more quickly. A sensitive balance could be used.

1. Fill out an Investigation Guide sheet about the three variables you investigated, plus an outline of your procedure.
2. Make a summary sentence about how reactions can be sped up.
3. Use your conclusions or summary sentences to explain why:
(a) Powders that neutralise stomach acid work faster than tablets which do the same job.
(b) Car exhaust pipes rust much faster than other parts of a car.
(c) Sawdust and twigs burn faster than tree trunks.
(d) Fruit ripens quickly during a hot summer.
(e) Freezers keep food from "going off" quickly.
(f) Chips cook faster than boiled potatoes.
(g) Pure oxygen is used in welding equipment to produce a very hot flame.
(h) Most plants do not grow well in winter.
(i) Battery acid destroys clothes but acid in fruit does not.

OPEN INVESTIGATION (ALTERNATIVE TOPICS)

You have to select a chemistry topic to investigate by selecting from the list below or coming up with your own ideas. You can work on your own or in groups of up to three students. You have to plan your own experiment, conduct the experiment, process quantitative data, evaluate the findings, write up a formal report and display your investigation. Students will be able to order basic science equipment and chemicals but will have to obtain most of their equipment and chemicals such as Mars bars and cat food from other sources!

TOPIC LIST:

1 What factors increase the rate of chemical reactions?
2 What washing detergent cleans the best?
3 Do all metals react at the same rate in acids?
4 Does acid rain affect plant growth?
5 What materials are best for soaking up oil spills in water?
6 What affect does acid rain have on various materials?
7 Which acid produces the most hydrogen gas when mixed with a metal?
8 What affect does temperature have on the amount of chlorine in pools?
9 What methods are most effective for stopping iron from rusting?

10 What is the most efficient stain remover?

11 What are the factors affecting froth flotation of ores?
12 What are the factors affecting the electrolytic purification of copper?
13 What are the factors affecting the strength of concrete? YOUR OWN TOPIC - it has to be approved by your teacher.

SOME HELPFUL INFORMATION

TIMELINE:

WEEK 1: Start thinking about a suitable topic or choose from the above list. Brainstorm by getting as many ideas as you can as quick as you can. Ideas that are ridiculous today might be brilliant tomorrow.
Narrow possibilities and choose your topic.
Discuss it with your teacher.
Do some background reading and research on the topic.
Complete the planning stage using the Investigation Guide Sheet.

WEEK 2: Prepare list of equipment and give to your teacher.
Complete preliminary trials. Refine plans and equipment needs.
WEEK 3: Begin observations and measurements.
(in class) Begin writing the early sections of your report.

WEEK 4: Continue the investigation. Complete data collection and analysis.
(in class) Continue writing your report.
Complete the write-up and display chart (three A-3 sheets) for your investigation.

HOW TO WRITE UP AND DISPLAY
 A SCIENCE INVESTIGATION REPORT

A science investigation report is different to reports done in other subjects.
Science Reports are based on investigation and research. They present information objectively, formally and clearly. They are written in the past tense because you are reporting work that has already been done. e.g. "The solution was heated to $100^{\circ} \mathrm{C}$ "

Reports bring together the aims, methods, results and conclusions in the following format:

1	TITLE or COVER PAGE
2	SUMMARY
3	INTRODUCTION
4	METHODS AND MATERIALS
5	RESULTS
6	DISCUSSION
7	CONCLUSION
8	ACKNOWLEDGMENTS
9	REFERENCES
10	APPENDIX

TITLE

This is the cover page of your report. Make sure you include the title of the report, your name, school, year and date.

> e.g. AN INVESTIGATION INTO HOMEMADE FERTILISERS, Fred Manures, Rossmoyne Senior High School, Year 10, August 2010.

SUMMARY

You write the summary after you have written the rest of the report. It is a brief explanation of what the research was about, and the conclusions reached.

INTRODUCTION

Explain briefly the aims and objectives of your investigation and any hypothesis you made. Give some background scientific information that you have discovered about the subject from reading books or surfing the net. Maybe you could say why you decided to choose this topic for your investigation.

METHODS AND MATERIALS

Give information about how to set up the experiment, what equipment and materials you used and what methods of observation were tried. A diagram and list of equipment should be included.
The method or procedure should be written down (like a recipe) that can be easily repeated. Use exact quantities and units of measurement. Use the standard names of chemicals and organisms (plants and animals)
Describe the dependent variable (the one that is measured in the investigation.
e.g. height of the plant)

Describe the independent variable (the one that is changed in the investigation. e.g. amount of fertiliser added)

Describe the controlled variables (the ones you kept the same at all times.
e.g. amount of soil, type of soil, amount of water added etc.)

Explain any safety precautions.

RESULTS

Present a summary of the results, including measurements and observations.
Use tables, graphs and diagrams where necessary.

DISCUSSION

Point out the meaning of the results. Relate them back to your hypothesis.
Point out any trends or patterns in your results.
Comment on the strengths and weaknesses of your investigation.
Suggest any future improvements and ideas for follow-up research.

CONCLUSION

Explain whether the hypothesis was supported or rejected.
Explain why the results happened as they did.

ACKNOWLEDGMENTS

Mention the assistance other people or organisations have made to your investigation and report briefly, thanking them.

REFERENCES

Alphabetically list your sources as follows:
Author(s)' Surname and Initials. Title. Publisher. Date of Publication
e.g. Bolton, W., Physics Investigations, McGraw-Hill, 1996
or Bolton, W., "Physics Investigations", McGraw-Hill, 1996

APPENDIX

Include any extra information which may give more detail or help others attempting to repeat the research investigation.

DISPLAYING YOUR INVESTIGATION

A display board should be set up that summarises your investigation in an eye catching manner. The board should consist of three A-3 pieces of thick card or plywood that are joined together in some manner (e.g. with Velcro strips) so that the board can stand on a bench top.

Your written report should be placed in a display book with plastic sleeves with an artistic cover.

Any other material, such as some of your equipment or specimens could be displayed on the bench as well.

See sketch below:

CALCULATIONS IN CHEMISTRY - MOLES

The hydrogen 'pop test' is great fun, but when the Hindenberg airship exploded into flames no one had fun! The only difference between these two reactions is the amounts of the substances (reactants or reagents) that 'popped'.

Chemists must answer questions of amounts all the time. Questions such as:
"How much oxygen is needed to \qquad ?"
"How much iron can be recovered from ...?"
"How much energy will be released when ...?"

We have learned how to write and balance equations for chemical reactions and these help us to answer questions of amounts. Let us look again at the 'pop test'. Its balanced equation looks like this:

$$
2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(g)}
$$

This tells us something about amounts. It says that "two molecules of hydrogen gas join with one molecule of oxygen gas to make two molecules of water."

This comic gives you the general idea.

But what does it really mean?
Not much as far as amounts go! Atoms are so amazingly tiny it is impossible to see them in the normal sense of the word. It is impossible to weigh them with normal equipment. If every person in Australia contributed one atom to an atomic line-up, the line would be about 2 mm long.

There are about 100000000000000000000 atoms of iron in a staple. i.e 10^{20} atoms.

COUNTING ATOMS IS NOT REALLY A GOOD WAY TO MEASURE REAL AMOUNTS BECAUSE WE NEED SO MANY OF THEM.

When there are just too many things to count, people often count special bundles or groups. Some examples are:

eggs
sheets of paper
cool drink cans
matches

dozens
reams
cartons slabs
boxes cartons

12
about 500
24
30
approx. 50 approx. 500 $\mathbf{~}$

The group or bundle for atoms and molecules has to be HUGE, because they are so small. The group is called a mole. The number is huge. It is called AVOGADRO'S NUMBER and was named after an Italian scientist.

1 mole means 6.02×10^{23} or 602000000000000000000000
Therefore $\quad 1$ mole of iron contains 6.02×10^{23} atoms of iron.
1 mole of water contains 6.02×10^{23} molecules of water.

MOLES and NUMBERS

Use the equation below to help you.

where:
$\mathbf{n}=$ moles

EXAMPLE 1: How many moles of iron in a sample containing 1.204×10^{24} atoms?
$\mathrm{n}=1.204 \times 10^{24} \div 6.02 \times 10^{23}=2$ moles
EXAMPLE 2: How many particles are there in 5 moles of a substance?
Rearranging the equation gives:
Number of particles $=\mathrm{n} \times 6.02 \times 10^{23}$

$$
=5 \times 6.02 \times 10^{23}=3.01 \times 10^{24} \text { particles }
$$

SET 1: Write the answers to the following in your notebook:

1. How many moles of copper in a sample containing 1.806×10^{24} atoms?
2. How many moles of water in a sample containing 3.01×10^{24} molecules?
3. How many particles are there in 2.5 moles of a substance?
4. How many molecules are there in 0.25 moles of ammonia gas?

MOLES and MASS

In the laboratory we need to be able to measure out amounts of chemicals. Weighing is the easiest way to do this, but as we have seen before, we want to know the amount in moles which is a number of particles.

To convert moles to a mass and vice versa we must be able to use atomic weights (correctly called relative atomic mass)

Every element has a relative atomic mass (atomic weight). You do not need to learn them because you can use a chart like the one below. For our calculations we will define relative atomic mass (atomic weight) as:

Atomic weight is the mass of one mole of an element.

Element	symbol	atomic weight	Element	symbol	atomic weight	Element	symbol	atomic weight
aluminium	Al	27	lead	Pb	207	radium	Ra	226
calcium	Ca	40	magnesium	Mg	24	silicon	Si	28
carbon	C	12	mercury	Hg	201	silver	Ag	107.9
chlorine	Cl	35.5	nickel	Ni	59	sodium	Na	23
chromium	Cr	52	nitrogen	N	14	strontium	Sr	87.6
copper	Cu	63.6	oxygen	O	16	sulfur	S	32
helium	He	4	phosphorus	P	31	tin	Sn	119
hydrogen	H	1	plutonium	Pu	244	uranium	U	238
iron	Fe	56	potassium	K	39	zinc	Zn	65

SET 2: Use the above Atomic Weight Table to answer these questions:

1. Why do you think mercury and lead are called heavy metals?
2. Why are hydrogen and helium used in balloons and airships?
3. Which metal, aluminium or iron, is best for building planes? Give a reason for your answer.
4. What is the atomic weight of uranium?

Most substances exist with the atoms joined together.
To find the Molar Mass (i.e. mass of 1 mole or mass of 6.02×10^{23} molecules) of a molecular substance, we just add up all the atomic weights. This is sometimes called the Molecular
Weight.
EXAMPLE: Find the Molar Mass (Molecular Weight) of water.
$\mathrm{H}_{2} \mathrm{O}$: contains 2 hydrogen atoms $=2 \times 1=2 \mathrm{~g}$ and 1 oxygen atom $=1 \times 16=16 \mathrm{~g}$ Therefore Molar Mass (M) $=18 \mathrm{~g}$

DD

SET 3: Calculate the Molar Mass (M) of the substances below.

Set out your work as shown in the example above.
a) carbon dioxide
b) oxygen gas
c) dinitrogen oxide (nitrous oxide or laughing gas) $\mathrm{N}_{2} \mathrm{O}$
d) methane
e) benzene $\mathrm{C}_{6} \mathrm{H}_{6}$
f) chlorine gas
g) sulfur dioxide
h) sugar - $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
i) alcohol - $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
j) acetic acid (vinegar) - $\mathrm{CH}_{3} \mathrm{COOH}$
k) ammonia gas - NH_{3}

1) hydrogen peroxide - $\mathrm{H}_{2} \mathrm{O}_{2}$

CALCULATING MOLES FROM A GIVEN MASS OF A SUBSTANCE

Where $\quad \mathbf{n}$ is the number of moles
\mathbf{m} is the mass in grams
\mathbf{M} is the Molar Mass

EXAMPLE 1: How many moles are there in 36 g of water?
$\mathrm{n}=\frac{\mathrm{m}}{---} \frac{36}{\mathrm{M}}=\frac{---}{18}=2$ moles
Molar Mass: $\mathrm{H}_{2} \mathrm{O}=(2 \mathrm{x} 1)+(1 \times 16)=18 \mathrm{~g}$

STEP 2:

Use this equation to find the number of moles when you are given the mass in grams.

```
STEP 1
Find the Molar Mass
by adding the atomic weights.
```

EXAMPLE 2: How many moles are there in 22 g of propane gas $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$?
$\mathrm{n}=\frac{\mathrm{m}}{---}=\frac{22}{\mathrm{M}}=\frac{----}{44}=0.5$ moles

> Molar Mass: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ $\quad=(3 \times 12)+(8 \times 1)=44 \mathrm{~g}$

[1]SET 4: Now try these and set them out as above:

Calculate the number of moles in:

1. $\quad 196 \mathrm{~g}$ of sulfuric acid.
2. 68 g of ammonia gas
3. 128 g of sulfur dioxide
4. $\quad 78 \mathrm{~g}$ of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$
5. 63 kg of nitric acid (watch it - the mass is given in kilograms!)
6. 20 mg of water (watch it - the mass is given in milligrams!)

CALCULATING MASS FROM A GIVEN NUMBER OF MOLES OF A SUBSTANCE

EXAMPLE 1: Find the mass of 2 moles of water.

STEP 1: Re-arrange the equation m
$\mathrm{n}=---$ so it becomes $\mathrm{m}=\mathrm{n} \mathrm{x} \mathrm{M}$ M

Molar Mass:
$\mathrm{H}_{2} \mathrm{O}=(2 \times 1)+(1 \times 16)=18 \mathrm{~g}$

STEP 2:

Find the Molar Mass by adding the atomic weights

EXAMPLE 2: Find the mass of 0.8 moles of oxygen gas $\left(\mathrm{O}_{2}\right)$.

STEP 1: Re-arrange the equation
m
$\mathrm{n}=--$ so it becomes $\mathrm{m}=\mathrm{n} \times \mathrm{M}$ M

1. 1.5 moles of carbon monoxide
2. $\quad 2.5$ moles of ammonia gas
3. $\quad 6.0$ moles of hydrogen chloride gas
4. $\quad 234.2$ moles of sulfuric acid

Molar Mass:

$$
\overline{\mathrm{O}_{2}=}(2 \times 16)=32 \mathrm{~g}
$$

STEP 2:
Me Mor the atomic weights

You have been doing chemical calculations with molecular substances. Molecular substances are composed of non-metallic elements. For example CO_{2} and NH_{3}.
But you can do the same sort of calculations with ionic compounds. Ionic compounds are made up of metal and non-metallic elements.
For example, copper chloride, zinc carbonate, lead nitrate.
Remember the following points:

1. If you need to find the Molar Mass then add the atomic weights together.

2. If you have to find the number of moles and you are given the mass of the
compound:

$$
\text { Use the equation: } \quad n=---
$$

3. If you have to find the mass and you are given the number of moles of the compound then re-arrange the above formula to give:

$$
\mathbf{m}=\mathbf{n} \times \mathbf{M}
$$

SET 6: Now try the following calculations:

1. How many moles in 250 g of sodium chloride (NaCl) ?
2. How many moles in 475 g of copper sulfate $\left(\mathrm{CuSO}_{4}\right)$?
3. Find the mass of 0.25 mole of aluminium hydroxide $-\mathrm{Al}(\mathrm{OH})_{3}$
4. Find the Molar Mass of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
5. How many moles in 145 g of zinc carbonate?
6. Find the mass of 28 moles of magnesium nitrate.
7. Which has the highest Molar Mass, sulfuric acid or magnesium sulfate?
8. Which contains the greatest number of moles?

40 g of iron chloride or 40 g of sodium hydroxide?
9. An aluminium saucepan weighs 100 g when empty and 300 g when full of water.
a) How many moles of water are present?
b) How many moles of aluminium in the saucepan?
10. If gold sells for $\$ 200$ a gram, how much would 35 moles of gold be worth?
(This one will test your analytical skills!!)

MOLES - METHOD OF ATTACK GUIDESHEET FOR CALCULATIONS WHERE YOU HAVE TO FIND MOLES OR MASS OR VOLUME OF A GAS OR NUMBER OF PARTICLES OF A CHEMICAL

1. QUESTION MARK (?) THE UNKNOWN SUBSTANCE AND TICK (\checkmark) THE KNOWN (GIVEN) SUBSTANCE.
THESE ARE OFTEN THE SAME SUBSTANCE
2. FIND MOLES OF THE KNOWN SUBSTANCE.

You will be given the moles already OR you will have to calculate the number of moles by using one of the following formulas:
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}$
(use when given the mass of the known substance)
$\mathrm{n}=\frac{\text { No of particles }}{6.02 \times 10^{23}}$
(use when given the number of particles, i.e. atoms/molecules/ions)
$\mathrm{n}=\frac{\mathrm{V}}{22.4}$
(use when given the volume of a gas)
3. FIND MOLES OF THE UNKNOWN SUBSTANCE.

If the known and unknown substances are the same chemical then the answer to step 3 is the same as the answer to step 2.

If the known and unknown substances are different chemicals then calculate the moles of the unknown by using one of the formulas below:

IF UNKNOWN IS PART OF A COMPOUND: (e.g.TO FIND AMOUNT OF OXYGEN IN CO_{2} : multiply $\mathrm{n}(\mathrm{known})$ by 2
because there are 2 atoms of oxygen in CO_{2})
\mathbf{n} (unknown part of compound) $=\mathbf{n}_{\text {known }} \mathbf{x}$ number of unknown atoms or ions in the formula of the chemical
IF UNKNOWN IS THE COMPOUND: (e.g.TO FIND AMOUNT OF CO_{2} THAT HAS AN AMOUNT OF OXYGEN IN IT: divide n (known) by 2 because there are 2 atoms of oxygen in CO_{2})
n(unknown compound) $\quad=n_{\text {known }} \div$ number of known atoms or ions in the formula of the chemical
4. WORK OUT THE ANSWER IF YOU HAVE NOT ALREADY OBTAINED IT IN STEP 2 OR 3.

If you have to find mass rearrange $n=\frac{m}{M} \quad$ to give $\quad m=n \times M$
If you have to find \mathbf{N}° of particles rearrange

$$
n=\frac{\text { No of particles }}{6.02 \times 10^{23}} \text { to give } N^{\circ} \text { of particles }=n \times 6.02 \times 10^{23}
$$

If you have to find volume of a gas rearrange

$$
\mathbf{n}=\frac{\mathbf{V}}{\mathbf{2 2 . 4}} \quad \text { to give } \quad \mathbf{V}=\mathbf{n} \times 22.4
$$

EXAMPLES TO ILLUSTRATE THE METHOD OF ATTACK GUIDESHEET FOR MOLE CALCULATIONS

EXAMPLE 1:

How many moles of CO_{2} in 88 g of CO_{2} ?

1. QUESTION MARK (?) THE UNKNOWN SUBSTANCE AND

TICK (\checkmark) THE KNOWN (GIVEN) SUBSTANCE.
2. FIND MOLES OF THE KNOWN SUBSTANCE.

EXAMPLE 2:
How many aluminium ions are in 306 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$?

1. QUESTION MARK (?) THE UNKNOWN SUBSTANCE AND TICK (\checkmark) THE KNOWN (GIVEN) SUBSTANCE.
2. FIND MOLES OF THE KNOWN SUBSTANCE.
$\mathrm{n}\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)=\underset{\mathrm{M}}{\mathrm{m}}=\frac{357}{-------}=3.5 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$
3. FIND MOLES OF THE UNKNOWN SUBSTANCE.
$\mathrm{n}_{\text {unknown }}=\mathrm{n}_{\text {known }} \mathbf{x}$ number of unknown ions in the formula of the chemical $\mathrm{n}\left(\mathrm{Al}^{3+}\right)=2 \mathrm{x} 3.5=7.0 \mathrm{~mol} \mathrm{Al}{ }^{3+}$
4. WORK OUT THE ANSWER.
№ of particles $=\mathrm{n} \times 6.02 \times 10^{23}=7.0 \times 6.02 \times 10^{23}=\mathbf{4 . 2 1} \times \mathbf{1 0}^{\mathbf{2 4}}$ ions of aluminium.

EXAMPLE 3:
?
Calculate the mass of propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ that contains 200 g of carbon.

1. QUESTION MARK (?) THE UNKNOWN SUBSTANCE AND TICK (\checkmark) THE KNOWN (GIVEN) SUBSTANCE.
2. FIND MOLES OF THE KNOWN SUBSTANCE.
$\mathrm{n}(\mathrm{C})=\frac{\mathrm{m}}{\mathrm{M}}=\frac{200}{12}=16.666 \mathrm{~mol} \mathrm{C}$
3. FIND MOLES OF THE UNKNOWN SUBSTANCE.
n(unknown compound) $=n_{\text {known }} \div$ number of known atoms in the formula of the chemical
$\mathrm{n}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right) \quad=16.666 \div 3=5.555 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
4. WORK OUT THE ANSWER.
$\operatorname{mass}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)=\mathrm{nxM}=5.555 \mathrm{x} 44=\mathbf{2 4 4 . 4} \mathbf{g ~ C}_{\mathbf{3}} \mathbf{H}_{\mathbf{8}}$

GUIDE TO MOLE CALCULATIONS

Terms To Understand:

Atomic mass (Relative Atomic Mass, Atomic weight): $\mathbf{A}_{\mathbf{r}}$

This is the mass of an atom compared with one-twelfth the mass of an atom of carbon-12. These are available by looking at a Periodic Table or a list of Relative Atomic Masses.

Example: The atomic mass of sodium is 23; the atomic mass of oxygen is 16.00 (no units)

Molecular mass (Relative Molecular Mass, Molecular weight): $\mathbf{M}_{\mathbf{r}}$

This is the mass of a molecule compared with one-twelfth the mass of an atom of carbon-12.
These are calculated by adding together the atomic masses of the atoms that make up the molecule.
Example: Calculate the molecular weight of CO_{2}
$\mathbf{M}_{\mathbf{r}}\left(\mathbf{C O}_{\mathbf{2}}\right)=$ atomic mass of carbon $+(2 \mathrm{x}$ atomic mass of oxygen $)=12.01+(2 \times 16)=44.01$
Example: Calculate the molecular weight of oxygen gas $\left(\mathrm{O}_{2}\right)$. Oxygen gas exists as diatomic molecules.
$\mathbf{M}_{\mathbf{r}}\left(\mathbf{O}_{\mathbf{2}}\right)=(2 \mathrm{x}$ atomic mass of oxygen $)=(2 \times 16)=32$ (no units)
Example: Calculate the molecular weight of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
$\mathbf{M}_{\mathbf{r}}\left(\mathbf{C H}_{\mathbf{3}} \mathbf{C O O H}\right)=(2 \mathrm{x}$ atomic mass of C$)+(2 \mathrm{x}$ atomic mass of O$)+(4 \mathrm{x}$ atomic mass of H$)$ $=(2 \times 12.01)+(2 \times 16)+(4 \times 1.008)=60.232$ (no units)

Formula mass (Relative Formula Mass, Formula weight): $\mathbf{M}_{\mathbf{r}}$

This is the mass of a 'formula unit' compared with one-twelfth the mass of an atom of carbon-12. Note: A formula unit usually refers to ionic substances such as sodium chloride (NaCl).
These are calculated in exactly the same way as molecular masses.
Example: Calculate the formula mass of ammonium sulfate - $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

$\mathbf{M}_{\mathrm{r}}:\left(\mathbf{N H}_{4}\right)_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}$

$=(2 \mathrm{x}$ atomic mass of N$)+(8 \mathrm{x}$ atomic mass of H$)+($ Atomic mass of S$)+(4 \mathrm{x}$ atomic mass of O$)$ $=(2 \times 14.01)+(8 \times 1.008)+(32.1)+(4 \times 16)=132.184$ (no units)

Mole: Is Avogadro's number of particles (6.02×10^{23})
Example: 1 mol of $\mathrm{CH}_{3} \mathrm{COOH}$ contains $1 \times 6.02 \times 10^{23}$ molecules of $\mathrm{CH}_{3} \mathrm{COOH}$.
Therefore:
1 mol of $\mathrm{CH}_{3} \mathrm{COOH}$ contains $2 \times 6.02 \times 10^{23}$ atoms of C i.e. 2 mol of carbon.
1 mol of $\mathrm{CH}_{3} \mathrm{COOH}$ contains $2 \times 6.02 \times 10^{23}$ atoms of O i.e. 2 mol of oxygen.
1 mol of $\mathrm{CH}_{3} \mathrm{COOH}$ contains $4 \times 6.02 \times 10^{23}$ atoms of H i.e. 4 mol of hydrogen.
8 mol of $\mathrm{CH}_{3} \mathrm{COOH}$ contains $8 \times\left(4 \times 6.02 \times 10^{23}\right)$ atoms of H i.e. 32 mol of hydrogen.
Molar Mass: Is the mass of one mole of a substance. It is calculated in exactly the same way as relative molecular and formula masses except it has grams (g) for units. The symbol for Molar Mass is M.

Example: Calculate the Molar Mass of ammonium sulfate - $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

$\mathbf{M}:\left(\mathbf{N H}_{4}\right)_{2} \mathbf{S O}_{4}$

$=(2 \mathrm{x}$ atomic mass of N$)+(8 \mathrm{x}$ atomic mass of H$)+($ Atomic mass of S$)+(4 \mathrm{x}$ atomic mass of O$)$ $=(2 \times 14.01)+(8 \times 1.008)+(32.1)+(4 \times 16)=132.184 \mathbf{g}$

TYPE EXAMPLES: (REFER TO THE METHOD OF ATTACK GUIDESHEET) ?

EXAMPLE 1: How many moles of CO_{2} contain $1.8 \times 10^{\mathbf{2 4}}$ molecules of $\mathbf{C O}_{2}$?
Always start off by finding the moles of the given or known substance. You might have to use a formula.
$\mathrm{n}=\frac{\text { Number of particles }}{6.02 \times 10^{23}}=\frac{1.8 \times 10^{24}}{6.02 \times 10^{23}}=2.99 \mathrm{~mol} \mathrm{CO}_{2}$

?
 EXAMPLE 2: Find the number of atoms of carbon in $4 \mathbf{~ m o l}$ carbon.

1. Always start off by finding the moles of the given or known substance. You do not have to use a formula because you are given the moles of carbon already.

$$
\mathrm{n}(\mathrm{C})=4 \mathrm{~mol}
$$

2. Find moles of the unknown substance. In this case the known substance and the unknown substance are the same therefore the moles of carbon $=4 \mathrm{~mol}$.
3. Work out the answer by using a formula that has moles (n) and number of particles in it. $\mathrm{n}=\frac{\text { Number of particles }}{6.02 \times 10^{23}}$ therefore Number of atoms $=\mathrm{n} \times 6.02 \times 10^{23}$

Number of atoms C $=4 \times 6.02 \times 10^{23}=\mathbf{2 . 4 1} \times 10^{24}$ atoms \mathbf{C}

?

EXAMPLE 3: Find the number of moles of hydrogen in $\mathbf{0 . 2} \mathbf{~ m o l}$ ammonia ($\mathbf{N H}_{3}$).

1. Find the number of moles of the known or given substance.

$$
\mathrm{n}\left(\mathrm{NH}_{3}\right)=0.2 \mathrm{~mol}
$$

2. Find the number of moles of the unknown substance (i.e. what you have to find out)
n (unknown) $=\mathrm{n}$ (known) x number of atoms of the unknown in the formula of the known substance

| $\mathrm{n}(\mathrm{H})$ | $=0.2$ |
| :--- | :--- | :--- |
| $\mathbf{n}(\mathbf{H})$ | $=0.6 \mathbf{~ m o l ~ H}$ |

There is no need to go any further because you have obtained the answer already.

EXAMPLE 4: Find the number of atoms of hydrogen in $\mathbf{0 . 5} \mathbf{~ m o l}$ of ammonium carbonate.

1. Find the number of moles of the given or known substance. You have been given this already.

$$
\mathrm{n}\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}\right]=0.5 \mathrm{~mol}
$$

2. Find the number of moles of the unknown substance.
n (unknown) $=\mathrm{n}$ (known) x number of atoms of the unknown in the formula of the known substance
$\mathrm{n}(\mathrm{H}) \quad=0.5 \quad \mathrm{x} 8$ because there are 8 atoms of H in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
$\mathrm{n}(\mathrm{H}) \quad=\quad 4.0 \mathrm{~mol} \mathrm{H}$
3. Work out the answer by using a formula that number of particles in it.
$\mathrm{n}=\frac{\text { Number of particles }}{6.02 \times 10^{23}}$ therefore Number of atoms $=\mathrm{n} \times 6.02 \times 10^{23}$
Number of atoms H $=4 \times 6.02 \times 10^{23}=\mathbf{2 . 4 1} \times \mathbf{1 0}^{24}$ atoms \mathbf{H}

?

EXAMPLE 5: How many moles of MgCO_{3} in 33.6 g magnesium carbonate.

1. Find the number of moles of the given or known substance.
where:

$$
\begin{array}{ll}
\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} & \begin{array}{l}
n=\text { number of moles } \\
m=\text { mass in grams } \\
M
\end{array} \\
\mathrm{M}=\text { Molar Mass in grams }
\end{array}
$$

$$
\mathrm{n}\left(\mathrm{MgCO}_{3}\right)=\frac{33.6}{84}=0.4 \mathrm{~mol}
$$

$$
\begin{aligned}
& \text { Molar Mass: } \mathrm{MgCO}_{3} \\
& \begin{array}{l}
1 \times \mathrm{Mg}=1 \times 24=24 \\
1 \times \mathrm{C}=1 \times 12=12 \\
3 \times 0=3 \times 16=\underline{48} \\
\underline{84} \mathrm{~g}
\end{array}
\end{aligned}
$$

There is no need to go any further because you have obtained the answer already.

$$
n\left(\mathrm{MgCO}_{3}\right)=0.4 \mathrm{~mol}
$$

? \checkmark

EXAMPLE 6: Find the mass of $\mathbf{3}$ moles of ammonium sulfide.

1. Find the number of moles of the given or known substance.

$$
\mathrm{n}\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}\right]=3 \mathrm{~mol} \quad \text { (already given in the data) }
$$

2. Find the number of moles of the unknown substance.

$$
\mathrm{n}\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}\right]=3 \mathrm{~mol} \quad \text { (known and unknown are the same substance) }
$$

3. Work out answer by selecting a formula that has mass in it.

$$
\begin{aligned}
& n=\frac{m}{M} \quad \text { therefore: } m=n \times M \\
& \mathbf{m}\left(\mathbf{N H}_{4}\right)_{2} \mathbf{S}=3 \times 68=\mathbf{2 0 4} \mathbf{g}
\end{aligned}
$$

Molar Mass: $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
$2 \times N=2 \times 14=28$ $8 \times H=8 \times 1=8$ $1 \times S=1 \times 32=\underline{32}$

?

EXAMPLE 7: Calculate the mass of carbon in $\mathbf{9 0} \mathbf{g}$ of propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$.

1. Find the number of moles of the given or known substance.

$$
\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \quad \mathrm{n}\left[\mathrm{C}_{3} \mathrm{H}_{8}\right]=\frac{90}{44}=2.045 \mathrm{~mol}
$$

```
Molar Mass: C3 H
3\timesC = 3 x 12 = 36
8\timesH=8\times1= 
    44 g
```

2. Find moles of unknown substance.
n (unknown) $=\mathrm{n}$ (known) x number of atoms of the unknown in the formula of the known substance
$\mathrm{n}(\mathrm{C}) \quad=2.045 \times 3$ (because there are 3 carbon atoms in every molecule of $\mathrm{C}_{3} \mathrm{H}_{8}$)
$\mathrm{n}(\mathrm{C})=6.135 \mathrm{~mol}$
3. Find the answer by using a formula that has mass in it.
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \quad$ therefore: $\mathbf{m}(\mathbf{C})=\mathrm{n} \times \mathrm{M}=6.135 \times 12=73.62 \mathbf{g}$

EXAMPLE 8: Calculate the moles of nitrate ions in $\mathbf{6 0} \mathbf{g}$ of copper(II) nitrate.

1. Find the number of moles of the given or known substance.

$$
\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \quad \mathrm{n}\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}=\frac{60}{187.5}=0.32 \mathrm{~mol}\right.
$$

2. Find moles of unknown substance.

> Molar Mass: $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ $\begin{aligned} & 1 \times \mathrm{Cu}=1 \times 63.5=63.5 \\ & 2 \times \mathrm{N}=2 \times 14=28 \\ & 6 \times \mathrm{O}=6 \times 16=\underline{96} \\ & \underline{187.5} \mathrm{~g}\end{aligned}$
n (unknown) $=\mathrm{n}$ (known) x number of atoms of the unknown in the formula of the known substance
$\mathrm{n}\left(\mathrm{NO}_{3}{ }^{-}\right)=0.32 \times 2$ because there are 2 nitrate ions in every particle of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathbf{n}\left(\mathbf{N O}_{3}{ }^{-}\right)=\mathbf{0 . 6 4 ~ m o l}$ (There is no need to go further because you already have the answer)

?

EXAMPLE 9: Calculate the mass of sodium sulfate that contains $\mathbf{2 8 4} \mathbf{g}$ sodium ions.

1. Find the number of moles of the given or known substance.

$$
\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \quad \mathrm{n}\left[\mathrm{Na}^{+}\right]=\frac{284}{23}=12.35 \mathrm{~mol}
$$

2. Find moles of unknown substance.
n (unknown) $=\mathrm{n}$ (known) \div number of atoms of the known in the formula of the unknown substance
$\mathrm{n}\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)=12.35 \div 2$ because there are 2 sodium ions in every particle of $\mathrm{Na}_{2} \mathrm{SO}_{4}$

$$
=6.175 \mathrm{~mol}
$$

3. Find the answer by using a formula that has mass in it.

$$
\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \quad \text { therefore: } \mathbf{m}\left(\mathbf{N a}_{\mathbf{2}} \mathbf{S O}_{4}\right)=\mathrm{n} \times \mathrm{M}=6.175 \times 142
$$

```
Molar Mass: Na2SO4
2xNa = 2 x 23 = 46
1\timesS = 1 x 32=32
4\timesO=4\times16=\underline{64}
    142 g
```


EXAMPLE 10: Calculate the Molar Mass (molecular weight, formula mass etc) of a ? \checkmark substance if $\mathbf{0 . 1} \mathbf{~ m o l}$ of it has a mass of $\mathbf{3 . 0} \mathbf{~ g}$.

1. Find moles of known. $\quad n(X)=0.1 \mathrm{~mol}$
2. Find moles of unknown $\quad n(X)=0.1 \mathrm{~mol}$ (because known and unknown are the same substance)
3. Work out the answer using a formula that has Molar Mass (M) in it.

$$
\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \quad \text { therefore: } \mathbf{M}=\frac{\mathrm{m}}{\mathrm{n}}=\frac{3.0}{0.1}=30 \mathrm{~g} \mathrm{~mol}^{-1}
$$

EXAMPLE 1 1: Calculate the moles of methane gas that occupies 1.12 litres at S.T.P.
(S.T.P. stands for Standard Temperature and Pressure $-0^{\circ} \mathrm{C}$ and 101.3 kPa pressure)

1. Find moles of known. Use a formula that has volume of a gas in it.

$$
\mathrm{n}(\text { methane })=\frac{\mathrm{V}}{22.4}=\frac{1.12}{22.4}=0.05 \mathrm{~mol}
$$

There is no need to go any further because you already have the answer.

where:
$\mathrm{n} \quad=$ number of moles
$\mathrm{V} \quad=$ volume of the gas in litres
$22.4=$ number of litres occupied
by 1 mole of any gas at S.T.P.

EXAMPLE 12: Determine the volume occupied by $\mathbf{4 8 . 4} \mathbf{g}$ carbon dioxide at S.T.P.

1. Find the moles of known. You are not given the moles so use a formula that has mass in it.

$$
\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \quad \mathrm{n}\left[\mathrm{CO}_{2}\right]=\frac{48.4}{44}=1.1 \mathrm{~mol}
$$

```
Molar Mass: CO2
1\timesC = 1 x 12 = 12
2 x O = 2 x 16 = 32
    44 g
```

2. Find moles of unknown. Known and unknown are the same substance.

$$
\mathrm{n}\left[\mathrm{CO}_{2}\right]=1.1 \mathrm{~mol}
$$

3. Find the answer by using a formula that has volume of a gas in it.

WHAT'S IN A MOLE? - A SIMULATION ACTIVITY

BACKground: The mole is a quantity used in counting atoms and molecules much like the dozen is useful in counting eggs and oranges.

What to do: Use the molecular model kit and an electronic balance and complete the following table.
Do not fill in the shaded boxes.
Always make your predictions before making the measurements.
Record your results as you go.

Quantity	Predicted weight	Measured weight
one dozen (12) hydrogen (H) atoms		
one dozen (12) oxygen (O) atoms		
one dozen (12) oxygen molecules $\left(\mathrm{O}_{2}\right)$		
one dozen (12) water molecules $\left(\mathrm{H}_{2} \mathrm{O}\right)$		
one dozen (12) hydrogen peroxide molecules $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$		

Questions

1. What would 5.5 dozen water molecules weigh?
2. A container has 125 g of hydrogen peroxide molecules in it, how many dozen hydrogen peroxide molecules does it contain?
3. Calculate the mass of 1dozen hydrogen molecules $\left(\mathrm{H}_{2}\right)$.
4. How much would 6.2 dozen hydrogen molecules $\left(\mathrm{H}_{2}\right)$ weigh?
5. Calculated the number of dozen water molecules in a container that holds 62 g of it.
6. Calculated the number of dozen water molecules in a container that holds 62 g of it.
7. How could you use your balance to measure out (without counting !!!!) 16 dozen (192) hydrogen atoms?

MOLES WORKSHEET 1

Table 1 Relating moles, mass and numbers of atoms in molecular compounds. (abbreviation for moles is mol)

SUBSTANCE	MOLES OF	MOLAR MASS	MASS OF SUBSTANCE
Zn	1 mol		
Cu	1.5 mol		
P	0.1 mol		
O_{2}	1 mol		
O_{2}	4 mol		
O_{2}	0.2 mol		48 g
NH_{3}	1 mol		15 g
NH_{3}			
$\mathrm{H}_{3} \mathrm{PO}_{4}$			

Table 2 Relating moles, mass and numbers of ions in ionic compounds.

SUBSTANCE	MOLES OF SUBSTANCE	MOLAR MASS	MASS OF SUBSTANCE
NaOH			142 g
$\mathrm{Ca}(\mathrm{OH})_{2}$	6 mol		
$\mathrm{Ca}(\mathrm{OH})_{2}$			8.5 g
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$			
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$			
$\mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$	0.15 mol		
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2}$	0.25 mol		
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2}$			

USE THE METHOD OF ATTACK GUIDESHEET - TO FILL IN THE MISSING SPACES BELOW:
(A) Mass

130 g Zn
32.5 g Zn
18.0 g C
4.0 g C $21.0 \mathrm{~g} \mathrm{~N}_{2}$
(B) Mass

$18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$	\square
$27 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$	
$4.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$	
$12 \mathrm{~g} \mathrm{CH}_{4}$	
$51 \mathrm{~g} \mathrm{NH}_{3}$	

Moles of Molecules

(C) Mass

117 g NaCl
$55 \mathrm{~g} \mathrm{CaCl}_{2}$
$28 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$
$16.4 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}$
$55 \mathrm{~g} \mathrm{Li}_{2} \mathrm{SO}_{4}$

Moles of Atoms

Number of Molecules

Moles of \mathbf{H} Atoms

Number of \mathbf{H} Atoms
\qquad

Number of Atoms
\square
(note: abbreviation for moles is mol)

Number of
"formula units" of substance
\square

Moles of :

Cl^{-}ions	
	Cl^{-}ions
$\mathrm{Cl}^{\text {ions }}$	Cl^{-}ions
O^{2-} ions	O^{2-} ions
Na^{+}ions	Na^{+}ions
$\mathrm{SO}_{4}{ }^{2-}$ ions	$\mathrm{SO}_{4}{ }^{2}$ ions

Number of :
\square
(D) Calculate the mass in grams represented by the given number of moles:
1.0 mol oxygen atoms
$0.5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
$1.0 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$
$0.25 \mathrm{~mol} \mathrm{CuSO}_{4}$
$2.5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

1.0 mol oxygen molecules
$1.5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
$0.5 \mathrm{~mol} \mathrm{Mg}^{2+}$ ions
$2.0 \mathrm{~mol} \mathrm{OH}^{-}$ions
$0.1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ \square

PERCENTAGE COMPOSITION:
 A SPECIAL TYPE OF CALCULATION THAT USES A DIFFERENT METHOD

EXAMPLE 1: Find the percentage of iron in $\mathrm{Fe}_{3} \mathrm{O}_{4}$.

This means finding the percentage of elements or ions in a compound. Actually it is finding the mass of an element in 100 g of a compound. A formula for working it out is:

How would you work out the \% of girls in the class. If you can do that then finding the $\% \mathrm{Fe}$ in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ will be easy - no sweat!!

$$
\%[\text { element }]=\frac{\text { mass of element in the compound }}{\text { mass of the compound }} \times \frac{100}{1}
$$

You are not given any masses to work with so you can work with relative atomic masses and molar masses to obtain an answer. $\mathrm{Fe}_{3} \mathrm{O}_{4}$ has 3 atoms of Fe so we can adjust the above formula to read:

$$
\begin{aligned}
& \%[\mathrm{Fe}]=\frac{3 \times \text { atomic mass } \mathrm{Fe}}{\text { Molar Mass of } \mathrm{Fe}_{3} \mathrm{O}_{4}} \times \frac{100}{1} \\
& \%[\mathrm{Fe}]=\frac{3 \times 56}{232} \times \frac{100}{1}=72.4 \%
\end{aligned}
$$

```
Molar Mass: }\mp@subsup{\textrm{Fe}}{3}{}\mp@subsup{\textrm{O}}{4}{
3 x Fe = 3 x 56 = 168
4\timesO=4\times16=64
    232g
```

EXAMPLE 2: Find the percentage of water in hydrated copper sulfate crystals, $\mathrm{CuSO}_{4} \cdot \mathbf{5 \mathrm { H } _ { 2 }} \mathbf{O}$.

$$
\%\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{5 \times \text { Molar Mass }\left[\mathrm{H}_{2} \mathrm{O}\right]}{\text { MolarMassofCuSO }} \text {. } 5 \mathrm{H}_{2} \mathrm{O} ~ \times \frac{100}{1}=\frac{5 \times 18}{250} \times \frac{100}{1}=36 \%
$$

Molar Mass: $\mathrm{H}_{2} \mathrm{O}$

$2 \times H=2 \times 1=2$
$1 \times O=1 \times 16=\underline{16}$
18

```
Molar Mass:CuSO4.5H2O
1\timesCu = 1 x 64 = 64
1\timesS = 1 x 32 = 32
4\timesO=4\times16 = 64
10 x H = 10 x 1 = 10
5 x O = 5 x 16 = 80
    250g
```


ACTIVITY 9: PERCENTAGE COMPOSITION OF MAGNESIUM OXIDE

AIM: To experimentally determine the composition of magnesium oxide.
BACKGROUND: A compound can be described as "consisting of two or more different elements that are chemically combined in a definite ratio". In this experiment you will make a the compound magnesium oxide and determine its composition. The composition can be described as the mass of each element in 100 g of the compound. This is known as the percentage composition of the compound.

EQUIPMENT: balance ($\pm 0.001 \mathrm{~g}$), crucible and lid, bunsen, magnesium ribbon ($\sim 0.2 \mathrm{~g}$ ie $\sim 20 \mathrm{~cm}$), crucible tongs, pipe clay triangle, tripod, heat mat, matches

PROCEDURE: Safety Note Take care when burning magnesium ribbon. Do not touch the hot crucible or tripod with your hands. Always use crucible tongs. Before commencing heating practice handling the crucible lid with tongs.

Loosely coiled Mg ribbon

PLEASE NOTE:

Carefully read the following steps and place them into a logical sequence that would be suitable for this experiment.

$>$ Replace the crucible lid and allow the crucible and contents to cool.
$>$ Coil the magnesium ribbon so that it will fit into the crucible.
$>$ When all the magnesium has reacted, remove the lid and heat strongly for a further 5 minutes.
$>$ Accurately weigh the crucible and lid on a balance and record the mass in the table.
$>$ Obtain a clean, dry crucible and lid, and heat them for 5 minutes over a bunsen flame. Allow them to cool
> Carefully heat the crucible and its contents with the lid off until the magnesium begins to glow. Immediately replace the lid and heat the crucible strongly.
$>$ Reweigh the crucible with its content and lid.
$>$ Place the magnesium ribbon into the crucible, replace the lid and reweigh.
$>$ Carefully heat the crucible for about 10 minutes, occasionally lifting the lid with tongs to provide oxygen for the reaction. Try to avoid the loss of any magnesium oxide smoke when the lid is lifted.
> Draw up a table for your results as shown below.

Mass of crucible + lid	$\ldots \ldots g$
Mass of crucible + lid + magnesium	$\ldots g$
Mass of crucible + lid + magnesium oxide	$\ldots \ldots g$

CALCULATIONS AND QUESTIONS:

(show all working where a calculation is involved)

1. With reference to your results table, calculate
a) the mass of magnesium which was used.
b) the mass of oxygen combined with the magnesium
2. Calculate the \% by mass of the element oxygen (O) in the compound.
3. Calculate the \% by mass of the element magnesium (Mg) in the compound.
4. Assuming the formula of magnesium oxide is MgO , calculate the $\%$ by mass of the element magnesium (Mg) and $\%$ by mass of the element oxygen (O) in the compound.
5. Compare your experimental value for the percentage composition of magnesium oxide with that obtained from its known formula of MgO . Are your results in reasonable agreement with the theoretical expectations? You need to justify your answer.
6. Describe one change you could make to this experiment that would improve the reliability of your result. Justify your answer.

ACTIVITY 10: WATER OF CRYSTALLIZATION

AIM: \quad To measure the mass of water contained in a sample of crystalline copper sulfate and use this to determine the hydrated formula of copper sulfate.

EQUIPMENT: Crucible, 3 to 5 g hydrated copper sulfate, pipeclay triangle, tripod, bunsen, heat board, matches, electronic balance to $\pm 0.01 \mathrm{~g}$.

PROCEDURE:

1. Accurately weigh (two decimal places) a clean crucible and record this weight.
2. Add 3 to 5 g (your teacher will give each group a different weight) of crystalline copper sulfate to your crucible then reweigh and record your result.
3. Assemble the apparatus as shown below.
4. Heat your sample for 6 minutes.

SAFETY FIRST
Wear safety glasses and take care not to touch hot equipment such as the crucible or tripod.

5. Allow the crucible to cool then reweigh and record this weight to 2 decimal places.

EXTRA: Try this! Add a few drops of water to your dried (anhydrous) CuSO_{4} sample. What happens?

CALCULATIONS AND QUESTIONS:

1. From your measurement what is the mass of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ and copper sulfate $\left(\mathrm{CuSO}_{4}\right)$ contained in your sample.
2. Calculate the moles of water and copper sulfate contained in your example.
3. For your sample calculate the ratio $\frac{\mathrm{nH}_{2} \mathrm{O}}{\mathrm{nCuSO}_{4}} \quad$ Round this off to a whole number
4. Use your result from Question 3 to write a formula for Copper Sulfate crystals i.e. CuSO_{4} ? $\mathrm{H}_{2} \mathrm{O}$.
5. From what you observed in your experiment, describe two effects of removing the water of crystallisation from your copper sulfate crystals.
6. Use your measurements to work out what percentage (by mass) of your copper sulfate crystals was water.

HOW TO DO CALCULATIONS INVOLVING CHEMICAL EQUATIONS

1. WRITE DOWN THE BALANCED CHEMICAL EQUATION.
2. IDENTIFY THE UNKNOWN SUBSTANCE WITH A QUESTION MARK (?) AND THE KNOWN SUBSTANCE WITH A TICK
3. FIND THE MOLES OF THE KNOWN SUBSTANCE.

You will either be given the moles already OR you will have to calculate the moles by using one of the formulas below:
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}$
(Use when given the mass of the known substance)
$\mathrm{n}=\frac{\text { Number of particles }}{6.02 \times 10^{23}}$
(Use when given the number of particles i.e. atoms, ions, molecules)
$\mathrm{n}=\frac{\mathrm{V}}{22.4}$
(Use when given the volume of a gas at STP)
$\mathrm{n}=\mathrm{CV} \quad$ (Use when given the concentration in mol $\mathrm{L}^{\mathbf{- 1}}$ and volume in litres of a solution)
4. FIND THE MOLES OF THE UNKNOWN SUBSTANCE
unknown coefficient in balanced equation
n (unknown) =
known coefficient in balanced equation
5. WORK OUT THE ANSWER BY RE-ARRANGING THE FORMULAS BELOW.
(if you have not already obtained the answer)
If you have to find mass re-arrange: $n=\frac{m}{M} \quad$ to give $\quad m=n \times M$
If you have to find \mathbf{N}° of particles re-arrange: $\mathrm{n}=\frac{\text { Number of particles }}{6.02 \times 10^{23}}$ to give No.of.particles $=\mathrm{n} \times 6.02 \times 10^{23}$

If you have to find volume of a gas at STP re-arrange: $n=\frac{V}{22.4}$ to give $V=n \times 22.4$

If you have to find concentration or volume of a solution rearrange: $\mathrm{n}=\mathrm{CV}$ to give $\mathrm{c}=\frac{\mathrm{n}}{\mathrm{V}}$ or $\mathrm{V}=\frac{\mathrm{n}}{\mathrm{c}}$

CALCULATIONS INVOLVING CHEMICAL EQUATIONS TYPE EXAMPLES

EXAMPLE 1: 320 g of sulfur dioxide gas are burnt in oxygen to produce sulfur trioxide gas. Calculate the mass of oxygen gas required to produce the sulfur trioxide.

This is obviously a calculation involving a chemical equation so we follow the steps:

1. WRITE DOWN THE BALANCED CHEMICAL EQUATION.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

2. IDENTIFY THE UNKNOWN SUBSTANCE WITH A QUESTION MARK

AND THE KNOWN SUBSTANCE WITH A TICK
$\stackrel{\checkmark}{2 \mathrm{SO}_{2}(\mathrm{~g})}+\stackrel{?}{\mathrm{O}_{2}(\mathrm{~g})} \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
3. FIND THE MOLES OF THE KNOWN SUBSTANCE.

You are given a mass, therefore use the formula:

4. FIND THE MOLES OF THE UNKNOWN SUBSTANCE

We have not yet obtained the answer so we need to go to step 5 .
5. WORK OUT THE ANSWER BY RE-ARRANGING THE CORRECT FORMULA. You have to find mass so re-arrange: $\quad n=\frac{m}{M} \quad$ to give $m=\mathbf{n} \times \mathbf{M}$
$\mathbf{m}\left(\mathrm{O}_{2}\right)=\mathbf{n}\left(\mathbf{O}_{2}\right) \times \mathbf{M}\left(\mathbf{O}_{2}\right)=2.50 \times 32=80.0 \mathrm{~g}$

ANSWER: mass of $\mathrm{O}_{\mathbf{2}}(\mathrm{g})=80.0 \mathrm{~g}$

MOLAR MASS of oxygen $\left(\mathrm{O}_{2}\right)$
$=2 \times$ atomic mass of oxygen
$=2 \times 16$
$=32 \mathrm{~g}$

CALCULATIONS INVOLVING CHEMICAL EQUATIONS TYPE EXAMPLES

EXAMPLE 2: 540 g of aluminium powder are reacted with hydrochloric acid to give aluminium chloride and hydrogen gas. Calculate the volume of hydrogen gas produced at standard temperature and pressure.

This is obviously a calculation involving a chemical equation so we follow the steps:

1. WRITE DOWN THE BALANCED CHEMICAL EQUATION.

$$
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

2. IDENTIFY THE UNKNOWN SUBSTANCE WITH A QUESTION MARK and the known substance with a tick
\checkmark ?
$2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
3. FIND THE MOLES OF THE KNOWN SUBSTANCE.

You are given a mass, therefore use the formula:
4. FIND THE MOLES OF THE UNKNOWN SUBSTANCE

n (unknown) $=\quad$| unknown coefficient in balanced equation |
| :--- |
| known coefficient in balanced equation -------------------- | X \quad (known)

$$
\mathbf{n}\left(\mathrm{H}_{2}\right) \quad=\begin{aligned}
& 3 \\
& --- \\
& 2
\end{aligned} \mathrm{X} \quad \mathrm{n}(\mathrm{Al})=\underset{2}{-----} \times 20.0=\mathbf{3 0 . 0} \mathbf{~ m o l}
$$

We have not yet obtained the answer so we need to go to step 5 .
5. WORK OUT THE ANSWER BY RE-ARRANGING THE CORRECT FORMULA.

You have to find volume of a gas at STP so re-arrange: $n=\frac{\mathrm{V}}{22.4}$--- \quad to give $\mathbf{V}=\mathbf{n} \times \mathbf{2 2 . 4}$
$\mathbf{V}\left(\mathrm{H}_{2}\right)=n \times 22.4=30.0 \times 22.4=672 \mathrm{~L}$

ANSWER: volume of $\mathrm{H}_{2}(\mathrm{~g})=672 \mathrm{~L}$
VOLUME of a gas is always expressed in litres - symbol L

CALCULATIONS INVOLVING CHEMICAL EQUATIONS TYPE EXAMPLES

EXAMPLE 3: 540 g of aluminium powder are reacted with hydrochloric acid to give aluminium chloride and hydrogen gas. Calculate the volume of $6.00 \mathrm{~mol}^{-1}$ hydrochloric acid required to completely react with the aluminium.

This is obviously a calculation involving a chemical equation so we follow the steps:

1. WRITE DOWN THE BALANCED CHEMICAL EQUATION.

$$
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

2. IDENTIFY THE UNKNOWN SUBSTANCE WITH A QUESTION MARK AND THE KNOWN SUBSTANCE WITH A TICK

$$
\text { n } 3
$$

$$
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

3. FIND THE MOLES OF THE KNOWN SUBSTANCE.

You are given a mass, therefore use the formula:
4. FIND THE MOLES OF THE UNKNOWN SUBSTANCE

n (unknown) $=\quad$| unknown coefficient in balanced equation |
| :--- |
| known coefficient in balanced equation ---------------------- |$\quad X \quad n$ (known)

$$
\mathrm{n}(\mathrm{HCl})=\begin{gathered}
6 \\
--- \\
2
\end{gathered} \times \quad \mathrm{n}(\mathrm{Al})=\frac{6}{-----} \times 20.0=\mathbf{6 0 . 0} \mathbf{~ m o l}
$$

We have not yet obtained the answer so we need to go to step 5 .
5. WORK OUT THE ANSWER BY RE-ARRANGING THE CORRECT FORMULA.
You have to find volume of a solution so re-arrange: $\quad n=c \mathrm{~V}$ to give $\mathrm{V}=\frac{\mathbf{n}}{\mathbf{c}}$

ANSWER: volume of $\mathrm{HCl}(\mathrm{aq})=10.0 \mathrm{~L}$

1. CONVERT KNOWN QUANTITIES TO MOLES
2. APPLY MOLE RATIO FROM THE
balanced equation
3. CONVERT MOLES TO A MASS OR VOLUME

ACTIVITY 11:
 DECOMPOSITION OF SODIUM HYDROGENCARBONATE

AIM: To examine the mole relationship between, NaHCO_{3}, and $\mathrm{Na}_{2} \mathrm{CO}_{3}$, for the decomposition of NaHCO_{3}.
BACKGROUND: When you heat $\mathrm{NaHCO}_{3}(\mathrm{~s})$ it decomposes to $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}$ and other gaseous products.
EQUIPMENT: Electronic balance (measuring to $\pm 0.001 \mathrm{~g}$), anhydrous NaHCO_{3}, crucible, bunsen, tripod, pipe clay triangle, heat board and matches.

Procedure:

1. Obtain a clean dry crucible. (You may wish to strongly heat your empty crucible for about 5 min prior to using. This will ensure any volatile material is removed from it before use)
2. Record the mass of the empty crucible (to nearest 0.001 g).
3. Add about $1.5 \mathrm{~g}-4.5 \mathrm{~g}$ (as directed by your teacher) of NaHCO_{3} to your crucible.
4. Reweigh your crucible and NaHCO_{3}, record this.
5. Assemble the apparatus as shown below. Heat your sample gently at first then strongly for about 5 minutes.

6. Allow the crucible to cool then reweigh and record your result.

CALCULATIONS \& QUESTIONS: (Show your working for any calculations)

1. Use your results determine the mass of NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ involved in the reaction.
2. Calculate the number of moles of NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ involved in the reaction.
3. From your experimental results what is the mole ratio of $\frac{n\left(\mathrm{NaHCO}_{3}\right)}{n\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)}$ for your experiment?
4. Write an equation for the decomposition of NaHCO_{3}. What should the mole ratio be according to the equation? Is your experimental result (from question 3) in agreement? Explain.
5. Does the mole ratio change when different amounts of NaHCO_{3} used? Explain.

SUMMARY OF CLASS RESULTS- (THERMAL DECOMPOSITION OF NaHCO ${ }_{3}$)

\mathbf{G} \mathbf{R} \mathbf{o} \mathbf{U} \mathbf{P}	Mass of $\mathbf{N a H C O}_{3}$	$\mathbf{M a s s ~ o f ~}_{\mathbf{N a}_{2} \mathbf{C O}_{3}}$	Moles of $\mathbf{N a H C O}_{3}$	$\mathbf{M o l e s ~ o f ~}_{\mathbf{N a}_{2} \mathbf{C O}_{3}}$	Ratio of moles of $\mathbf{N a H C O}_{3}$ used to moles of $\mathbf{N a}_{2} \mathbf{C O}_{3}$ formed.
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					

YOUR MISSION: Design then carry out an experiment that allows you to find out the mole relationship (ratio) between $\mathrm{n}[\mathrm{Cu}(s)]$ formed and $\mathrm{n}[\mathrm{Fe}(s)]$ used for the displacement reaction between Iron and copper sulfate solution.

BACKGROUND:

The metal iron has a reaction known as a displacement reaction when added to various salt solutions. In this example a piece of solid iron dissolves as the reaction progresses. At the same time solid copper is formed as a rather powdery brown insoluble solid.

This reaction involves iron atoms, $\mathrm{Fe}(s)$ (from the piece of iron) becoming oxidised as each atom loses one or more electrons to form a positive iron ion. The resulting iron ions are soluble in water so the metal appears to dissolve. At the same time the metal ions from the salt solution, in this case $\mathrm{Cu}^{2+}(a q)$ ions, become reduced as they gain two electrons each to form Cu atoms. As copper is insoluble it forms a brown powdery deposit of particles copper (Cu).

TECHNICAL ISSUES:

How will you collect your copper residue. When weighing your copper residue you will need to ensure it is quite dry and free of any salts. You should consider how to ensure there is no trace of solution adhering to your copper residue. Depending upon the quantities used there may be some iron left over when the reaction is complete. You should consult your teacher regarding this. As the reaction is rather slow it could take several hours to reach completion.

EQUIPMENT: As well as various lab glassware and equipment as stored in all labs you will have access to: Iron, (approximately $1-2 \mathrm{~g}$ in the form of nail, filings or steel wool - fine or coarse), 50 mL of approximately $1.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CuSO}_{4}(\mathrm{aq})$, Electronic balance (measuring to $\pm 0.001 \mathrm{~g}$), labels, an oven

PROCEDURE: Determine your procedure for doing the experiment. Pay attention to equipment, sequence of steps and measurements to be made along the way.

CALCULATIONS \& QUESTIONS: (Show your working for any calculations)

1. Use your results determine the moles of $\mathrm{Fe}(s)$ used and moles of $\mathrm{Cu}(s)$ produced in the reaction.
2. From your experimental results what is the mole ratio of $\frac{n(\mathrm{Fe})}{n(\mathrm{Cu})}$ for your experiment?
3. Determine the average value for your class results.
4. Try to write an equation for the reaction of $\mathrm{Fe}(a q)$ with $\mathrm{CuSO}_{4}(a q)$ that is consistent with the mole ratio you found.
5. What were the problems you encountered in conducting this experiment? In particular what situations might have limited the reliability of your final result? Suggest a practical way of overcoming two of the problems you have identified.

ACTIVITY 13:
 MOLAR VOLUME OF HYDROGEN GAS AT ROOM CONDITIONS

AIM: To experimentally find the volume of one mole of hydrogen gas at room conditions.
BACKGROUND: In this experiment the volume of hydrogen gas which is produced when a small piece of magnesium reacts with hydrochloric acid is measured. By also measuring the mass of magnesium used it is possible to determine the number of moles of hydrogen gas that would be produced. Since the volume of hydrogen gas will be measured it is then be possible to work out what volume one mole of hydrogen gas would occupy. This gives the molar volume of hydrogen gas at room conditions.

EQUIPMENT: One holed rubber stopper with coil of copper wire (to fit the measuring cylinder), 15 ml of $3 \mathrm{~mol} \mathrm{~L}^{-1}$ hydrochloric acid, 50 mL measuring cylinder, magnesium ribbon (about 4 cm), stand and clamp, cotton thread (20 cm), barometer, plastic ice cream container.

Apparatus set up:

Procedure:

1. Collect a length of clean Mg ribbon (2.0 to 3.0 cm max) and measure it to $\pm 0.05 \mathrm{~cm}$. Your teacher will give you the mass of 100.0 cm of clean ribbon so that you can calculate the mass of your magnesium. Record both pieces of data.
2. Fold the magnesium ribbon in half and slide it into the copper cage as shown in sketch above. Loosely wrap cotton thread around the Mg and copper cage.
3. Set up a retort stand and clamp to hold the measuring cylinder (or it may be easier to hold the cylinder upright).
4. Pour 15 mL of $0.3 \mathrm{~mol} \mathrm{~L}^{-1}$ hydrochloric acid into the measuring cylinder. Optional, for a colourful effect !!!!???? add a few drops of universal indicator to your acid....
5. Now very carefully fill the measuring cylinder to overflowing with tap water. Do this carefully so that mixing of the acid is minimised. It is best to angle the cylinder and pour slowly. Some mixing is OK .
6. Insert the magnesium, copper coil and stopper assembly into the measuring cylinder. Do this with a gentle twist and push action, there should be no air bubbles in your tube.
DANGER - don't excessively push on the stopper.
7. With a finger covering the hole in your stopper invert the measuring cylinder into the plastic trough as shown above. Gently clamp or hold the tube in place. The acid, being denser than water, will move down through the water and start to react with the magnesium. Hopefully the magnesium will stay in its copper cage.
8. When the reaction is complete tap the cylinder gently to dislodge any gas bubbles that are still attached to the coil or to the sides of the gas measuring tube.
9. Keep the mouth of the cylinder under water and carefully raise or lower it so that the water level inside the cylinder matches the water in the plastic trough. Now record the volume of gas in the cylinder to within $\pm 0.1 \mathrm{~mL}$.
10. Record the room temperature and barometric pressure.

Processing Of Results and Questions:

1. From your length of magnesium ribbon and the know mass of 100.0 cm of magnesium ribbon, determine the mass of magnesium used in the reaction.
2. Write an equation showing the reaction that occurs between $\mathrm{Mg}(\mathrm{s})$ and $\mathrm{HCl}(\mathrm{aq})$ producing $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{MgCl}_{2}(\mathrm{aq})$.
3. Using your answers to question 1 and 2, calculate the moles of hydrogen gas that should have been produced.
4. From your measured volume of hydrogen gas and your answer to question 3, regarding the moles of hydrogen expected, determine the volume of one mole of hydrogen gas (molar volume at room conditions). Quote your answer in litres per mole at the measured temperature and pressure.
(Hint: molar volume $\left(\mathrm{H}_{2}\right)=\frac{\text { volume }}{\text { moles }}$)
5. How would your answer for the molar volume of hydrogen have been different if the following changes were made? Answer higher, lower, no change, can't tell and give a short explanation.
(a) the room temperature had been higher
(b) the room pressure had been higher
(c) a bigger piece of magnesium had been used.
6. How does your experimental result for the molar volume of hydrogen gas compare with the accepted value of 22.4 litres at $0{ }^{\circ} \mathrm{C}$ and 101.3 kPa (or 24.5 L at $25^{\circ} \mathrm{C}$ and 101.3 kPa). Do you think your result is acceptable given the techniques used? Justify your ideas.

ACTIVITY 14: EXTRACTION OF A METAL FROM ITS ORE

AIM: To extract copper sulfate and copper metal from a copper containing ore.
APPARATUS: The copper ore is made by mixing copper sulfate, sand and plaster of Paris, adding water and allowing to set. (This will be done for you); balance; mortar and pestle; 2 beakers; filter funnel and stand; filter paper; burner, tripod and gauze mat; watch glass; hand lens; spatula; sodium chloride; stirring rod; power pack; strips of copper and lead;
2 connecting leads; steel wool.

METHOD: TAKE CARE !!! USE SAFETY GLASSES

1. Find the mass of the ore.
2. Crush the ore in a mortar using the pestle, until it is a powder.
3. Put the crushed ore in a beaker and add enough water to dissolve the ore and heat it for five minutes.
4. Let the mixture cool while any solid settles then filter. Keep as much solid in the beaker as possible so that it does not clog the filter paper.
5. Rinse the solid left in the beaker with about 10 mL of water and pour the rinse water through the filter paper as well.
6. Boil the filtrate until only a few mL remain then turn off the burner and leave the crystals to dry out completely.
7. Scrape the dry crystals that have formed onto a watch glass and weigh them.
8. CALCULATE the percentage yield of crystals in the ore.
9. Dissolve the crystals in water so that they completely dissolve.
10. Add a spatula of sodium chloride to help the solution conduct electricity.
11. Clean the lead and copper strips with steel wool.
12. Weigh the copper strip.
13. With the power pack on 4 V DC, pass an electric current through the solution with the lead strip connected to the positive and copper connected to the negative.
14. When the solution is clear or after 15 minutes turn the current off.
15. Take out the copper strip, wash it gently, leave it to dry then weigh it again.
16. CALCULATE the mass of copper deposited.
17. CALCULATE the percentage of copper in the copper ore you originally started with.

RESULTS:

Mass of copper ore	
Description of the crystals in the watch glass	
Mass of crystals in the watch glass	
Percentage yield of crystals in the ore	
What is the chemical name of the crystals?	
Mass of copper strip	
Mass of copper strip after electrolysis	
Mass of copper deposited on the copper strip	
Percentage of copper in the original copper ore sample	

QUESTIONS:

1. Why was the ore crushed before any processing was done?
2. What steps in the processing required an input of energy?
3. Calculate the percentage of copper in a sample of copper ore using the following information: mass of copper ore $=54.1 \mathrm{~g}$; mass of crystals in watch glass $=50.6 \mathrm{~g}$; mass of copper strip $=24.8 \mathrm{~g}$; mass of copper strip after electrolysis $=43.2 \mathrm{~g}$.

ACTIVITY 15: SMELTING A LEAD ORE

AIM: To extract lead from lead oxide by carbon reduction.

BACKGROUND:

Some metals like lead and iron can be extracted from their ores by carbon reduction. This involves mixing the ore with carbon in the form of coking coal or graphite and heating the mixture vigorously. This heating process is known as smelting.

The lead ions in the ore gain two electrons and form lead atoms. We say the lead ore has been reduced because electrons have been gained by a substance.

TECHNICAL ISSUES:

Lead oxide, lead and their vapours are poisonous. Avoid skin contact, and wash your hands after using lead or any lead compound. Avoid breathing any fumes.

EQUIPMENT:

Yellow lead oxide; piece of white paper; Bunsen burner, matches.

Procedure:

1. Adjust the burner so you have a small flame.
2. Light a match and let one third of it burn. The black charred end is mainly charcoal (Carbon)
3. Dip the charred end into water, then into some lead oxide.
4. Hold the end of the match in the burner flame and watch for the formation of tiny metallic blobs of molten material.
5. Allow the match to cool. Then place it on a piece of white paper and see if you can see any lead. If no lead has been formed, repeat steps 2 to 5 . Maybe a popstick could be used instead of a match.

Questions:

1. Why was the match dipped into water?
2. How do you know that a chemical reaction has taken place?
3. Where did the carbon needed for the reaction come from?
4. Write a balanced chemical equation for the smelting of lead oxide by carbon reduction.

ASSIGNMENT ON MINERALS AND MINING IN WA

Western Australia is well known for its vast mineral wealth. In fact mineral exploration mining and mineral processing provide the major platform for Western Australia's prosperity. In this assignment you are to research some aspects of this industry.

1. On a map of Western Australia, and using a key system identify where the following ores and minerals are mined, include the mine / town name. e.g - could be gold.

IRON ORE (three locations)
SALT (three locations)
NICKEL (two locations)
MINERAL SANDS (two locations)

COAL (two locations)
BAUXITE (one location)
GOLD (three locations)
2. Complete a table similar to the one below, indicating the names, formula and metals contained in the various minerals

MINERAL NAME	FORMULA OF MINERAL	USE OR ECONOMIC IMPORTANCE			
MAGNETITE					
HAEMATITE					
ZIRCON					
TANTALITE					
RUTILE					
ILMENITE					
SALT					
PENTLANDITE					
BAUXITE					

3. Give a short description of each of the following methods of mining; a simple two dimensional LABELLED sketch would be essential.
In particular, state the advantages of each type of mining.
```
OPEN PIT
STRIP
DREDGING
VERTICAL SHAFT
DECLINE
```

4. Consider the following techniques used in mineral exploration and write a short description of the scientific principle on how each of these works.

Aeromagnetic surveys Seismic surveys Satellite imagery Surface Sampling
Costeans (trenching) Diamond drilling Rotary Percussion drilling

5. Once an ore body has been mined the material is crushed to a suitable size. The valuable minerals within the crushed ore must then be concentrated. Concentration of the mineral from an ore involves physical processes. Use nickel and mineral sands mining to explain the process of mineral concentration. Consider any two of the following methods.

Froth Flotation Magnetic Separation

Gravity Separation Electrostatic Separation

6. Metals such as iron and aluminium are extracted from their ores by oxidation-reduction chemical processes like carbon reduction or electrolysis.
(i) Define the processes of reduction and oxidation in terms of gain/loss of electrons.
(ii) Using aluminium or iron as an example describe the chemical processes that occur during either electrolysis or carbon reduction. What substances are oxidised and what substances are reduced?

HNNDG POSTER

- You must SELECT ONE MINING COMPANY operating in W.A. and use it to demonstrate an awareness of the mining activities in which it is engaged.
- For example you could cover: location, exploration methods, mining methods, concentrating and processing methods, other activities of the company (including the current share price) etc. BUT THE FOCUS OF THE POSTER IS ON THE CONCENTRATING AND PROCESSING METHODS (include equations for any chemical processing steps even if they take place out of WA)
- You can have a go at designing your own poster with the aid of a computer package.
- The internet is a useful source of information.

THE TOPIC FOR THE POSTER IS: MINING AND CHEMISTRY INVOLVED IN MINERAL PROCESSING

THE SIZE OF THE POSTER IS TO BE A-3 SIZE. THAT IS TWO A-4 SHEETS JOINED TOGETHER.

