Equation Calculation Questions 2

For these, once you have calculated the number of moles, we can convert the moles to a mass by using $m=n \times M$.

Question 1 What mass of Sulfur Dioxide would be produced from 0.2 moles of Sulfur?

Number of moles of sulfur dioxide produced $=0.2 \times(8 / 1)=$ \qquad moles

$$
\begin{aligned}
\mathrm{M}\left(\mathrm{SO}_{2}\right) & =32.06+(2 \times 16.00) \text { (from table) } \\
& =64.06
\end{aligned}
$$

$\mathrm{m}=\mathrm{n} \times \mathrm{M}$
So: mass of $\mathrm{SO}_{2}=$ \qquad x $64.06=$ \qquad

Question 2 What mass of Magnesium would be required to produce 0.25 moles of Hydrogen gas?

Mole ratio: 1 : 2 : 1 : 1
Equation $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
Moles(n):
Question 3 Iron is produced from Haematite in a blast furnace from this reaction:
Mole ratio: 1 : 3 : 2 : 3
Equation $\quad \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
(a) What mass of Haematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ would produce 100 moles of iron?
(b) What mass of Carbon Dioxide would also be produced?
Answers:

1. 102.5 grams
2. 6.08 grams
3. (a) 7985 g (or 7.99 kg)
(b) 6601 g (or 6.60 kg)
