

BIOLOGY

ATAR course examination 2017

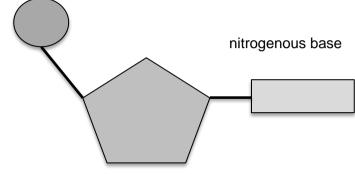
Marking Key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

Section One: Multiple-choice

30% (30 Marks)

Question	Answer
1	С
2	b
3	d
4	а
5	d
6	b
7	b
8	С
9	а
10	d
11	с
12	а
13	с
14	a
15	d
16	b
17	b
18	d
19	d
20	а
21	С
22	с
23	а
24	b
25	а
26	d
27	а
28	b
29	С
30	d


MARKING KEY

Section Two: Short answer

Question 31

(a) DNA is made of units called nucleotides. Draw and label a diagram of a nucleotide. (5 marks)

phosphate group

deoxyribose sugar

Description	Marks
Diagram labels	
Phosphate group or phosphate	1–3
Deoxyribose sugar or sugar	1-3
Nitrogenous base or base	
Diagram organisation	
Must show a nucleotide only or label a nucleotide within a larger diagram	1
Correct arrangement (Phosphate to sugar to base)	1
Accept any shapes	
Total	5

(b) (i) List the **two** sets of complementary base pairs that occur in DNA molecules. (2 marks)

Description	Marks
Adenine and thymine or A and T	1
Cytosine and guanine or C and G	1
Total	2

(ii) Name the type of chemical bond that links the complementary base pairs in a DNA molecule. (1 mark)

Description	Marks
Hydrogen (bond)	1
Total	1

(iii) Name the base in mRNA that is complementary to thymine in DNA. (1 mark)

Description	Marks
Adenine	1
Total	1

BIOLOGY

50% (100 Marks)

(20 marks)

(c) Describe the structure of mRNA.

(3 marks)

Description		Marks
Any three of:		
Single-stranded		
String of nucleotides		
Phosphate backbone		1–3
Ribose sugar		
Bases are A, G, C and U		
	Total	3

(d) Describe the role of tRNA in protein synthesis.

(4 marks)

Description	Marks
Any four of:	
Used to translate/read genetic code	
Carries a particular amino acid	
Amino acid (that is carried) is determined by anticodon	
Carries amino acid to ribosome	1_4
Recognises (corresponding) codon in mRNA	1-4
Anticodon is complementary to this codon	
Places amino acid in (correct position) growing	
protein/polypeptide/amino acid chain	
Total	4

(e) Provide a plausible explanation for the higher incidence of abnormalities in the barn swallows that live in the contaminated area. (4 marks)

Description	Marks
Any four of:	
Mutation	
Caused by radiation	
Radiation contains energy	
 (Physically) damages DNA or alters structure of DNA 	
 (As a result) Genes do not function or genes do not function properly 	1_4
(causing the abnormalities)	1-4
 Parents may pass changes/mutations to offspring 	
 Individuals in contaminated areas have high levels of mutation (and 	
hence more abnormalities) OR Individuals in uncontaminated areas	
have low/normal levels of mutation (and hence fewer abnormalities)	
Total	4

4

(20 marks)

(a) Compare the number of people per household in the two locations. Use data from the figure to support your answer. (4 marks)

Description	Marks
Any four of:	
 (On average) location 2 had more people per household or location 1 had fewer people per household. In location 1 most households had 2 people or 1 or 2 people or there were more households with 1 or 2 people than in location 2. In location 1 very few households had 6 people or households with 6 people were the least common. In location 1 there was a (sharp) decline in numbers after 2 people per household. In location 2 most households had 6 people or had 5 or 6 people. In location 2 most households with 3 people were the least common. In location 2 households with 3 people were the least common. In location 2 there more households with 3, 5 or 6 people than in location 1. For location 1, any accurate quote of data which gives both the number of dwellings and the number of persons per household. For location 2, any accurate quote of data which gives both the number of dwellings and the number of persons per household. The range in the number of people per household. 	1–4
Total	4

(b) Explain why data on the number of people per household are relevant to the development of a model for predicting the spread of influenza in human populations.

(4 marks)

Description	Marks
Any four of:	
 Influenza is spread through close contact If one member of the household has the disease, there is a (high) risk that it will be transmitted to other people in the household In location 2/locations with large households more people are likely to be infected or in location 1/locations with small households fewer people are likely to be infected Infected individuals can spread the disease to individuals from other households The more infected people there are, the greater the chances that an uninfected person from another household will come into contact with them or the fewer infected people there are, the lower the chances an uninfected person from another household will come into contact with (if all else is equal) The rate of transmission/spread (outside of the household) will also depend on the population size/density/vaccination or other factors. 	1–4
Total	4

Question 32 (continued)

(c) Can influenza be treated with antibiotics? Explain why or why not. (4 marks)

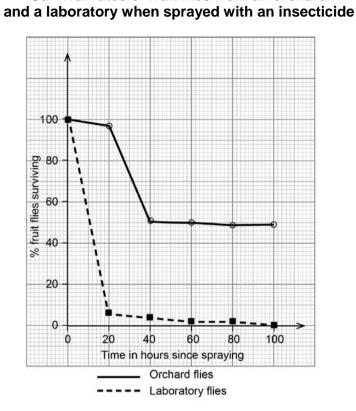
Description	Marks
No (influenza cannot be treated with antibiotics)	1
Any three of:	
Influenza is caused by a virus	
Antibiotics only work on bacteria	
Antibiotics work by targeting structures that are present in bacterial	
cells or antibiotics work by targeting structures that are not present in	
a virus	1–3
 Specific details – e.g. antibiotics target cell wall of bacteria or 	
ribosomes of bacteria (protein synthesis)	
Antiviral drugs are used to treat viral diseases	
Antiviral drugs disrupt the life cycle of the virus	
Total	4

(d) The Australian bat lyssavirus is a risk to human health. Explain why. (4 marks)

Description	Marks
Any four of:	
Zoonosis/zoonotic disease	
Can be transferred from bats to humans	
• When humans come into contact with infected bats or get bitten or	
scratched	1_4
Causes (fatal) illness in humans	1-4
• Virus is related to rabies virus or causes rabies like disease or virus	
effects nerve cells	
Difficult to treat/no effective treatment	
Total	4

(e) Explain **two** measures that could be taken to reduce the risk of white spot spreading from the affected farms to other parts of Australia. (4 marks)

Description	Marks
Any two sets of two measures:	
Kill the prawns at the affected farms	1–2
Virus cannot survive without prawns/disrupt the life cycle of the virus	1-2
Delay putting (new) prawns back in affected farms	
Give time for any viral particles in the environment to die/disrupt the	1–2
life cycle of the virus	
Chlorinate water/clean environment in the (affected) prawn farms	1–2
Kill all viral particles in the environment	1-2
Kill (unaffected) prawns at nearby farms	
Even if viral particles escape (from affected farms) there will be no	1–2
hosts for them to infect/disrupt the life cycle of the virus	
Quarantine all equipment/prawns on affected farms	
Prevent spread of virus through contaminated equipment or affected	1–2
prawns	
Physical barriers to prevent water from affected farms going into river	1–2
 Prevent spread of virus by river water 	1-2
Vaccinate prawns	1 - 2
Create large numbers of immune prawns or to create herd immunity	1-2
Total	4


BIOLOGY

(20 marks)

On the grid below, graph the percentage of fruit flies surviving over time for both the fruit (a) flies from the orchard and those from the laboratory. (6 marks)

Survival rates of fruit flies from an orchard

7

Description		Marks
Title, must include both variables		1
Line graph, data plotted separately for each group of flies with key		1
Correct axes (X and Y)		1
Correct scale		1
Labelling – accurate labelling on both axes including units		1
Plotting – data points accurate and accurately joined		1
	Total	6

Question 33 (continued)

(i) (b) State a hypothesis for the fruit fly experiment.

8

(2 marks)

Description	Marks
Any of the following:	
The survivorship of fruit flies from the orchard will be higher than the survivorship of the fruit flies from the laboratory when sprayed with/exposed to the insecticide	
or The survivorship of fruit flies from the laboratory will be lower than the survivorship of the fruit flies from the orchard when sprayed with/exposed to the insecticide	
or The survivorship of fruit flies from the laboratory and from the orchard will be the same when sprayed with/exposed to the insecticide or	1
Fruit flies from the orchard will be more resistance to the insecticide than fruit flies from the laboratory	
or Fruit flies from the laboratory will be more susceptible to the insecticide than fruit flies from the orchard	
Stated as a proposition, not a question or aim or prediction.	1
Total	2

(ii) (3 marks) Does the fruit fly experiment have a control? Explain your answer.

Description	Marks
EITHER	
Yes	1
Any two of:	
the laboratory flies are the control	
they had not previously been exposed to the insecticide	1–2
all (other) conditions were identical	
or any two of:	
 the two groups of flies only differ by one factor 	
(this factor is) exposure to insecticide	1–2
all (other) conditions were identical	
OR	
No	1
Need measure survivorship in flies that have not been sprayed	1
(with insecticide)	
Because the orchard and laboratory flies have come from different	1
environments (which could influence the results)	
Total	3

Calculate the number of flies from the orchard that died between 20 and 40 (c) (i) hours after being sprayed. Show your workings. (2 marks)

Description	Marks
460 (no units required as they are given in question)	1
Any one of:	
number of flies at 20 hours was 970	
number of flies at 40 hours was 510	1
• 970 – 510	
Total	2

(ii) Using your graph, estimate the time by which 50% of the fruit flies from the laboratory had died. (1 mark)

Description	Marks
11 hours (accept 10 – 12, must have units)	1
Total	1

(iii) Explain how you could modify the experiment to improve the accuracy of the estimate of the time by which 50% of the fruit flies from the laboratory had died. (2 marks)

Description	Marks
Measure survivorship more often	1
(Especially) between 0 and 20 hours or around the time when 50% (of flies) were dead.	1
Total	2

(d) Describe how the biologists could determine whether the allele that gave resistance was dominant or recessive to the allele that caused susceptibility. (4 marks)

Description	Marks
 EITHER Use a breeding experiment Cross resistant flies with susceptible flies Determine if offspring are resistant or susceptible If resistance allele is dominant expect all offspring to be resistant Providing that the resistant parent was a homozygote Need to obtain parents homozygous/true breeding for resistance or need to use a test cross Could get homozygous parents by inbreeding resistant flies Can test resistance/susceptibility by spraying with insecticide 	1-4
 OR Use a breeding experiment Cross resistant flies with each other Determine if offspring are resistant or susceptible If some of the offspring are susceptible The susceptible allele must have been present in (some) parents OR (some) parents were heterozygotes Indicates that the susceptible allele is recessive OR resistance allele is dominant Can test resistance/susceptibility by spraying with insecticide 	1-4
 OR Use a breeding experiment Cross susceptible flies with each other Determine if offspring are resistant or susceptible If some of the offspring are resistant The resistance allele must have been present in (some) parents OR (some) parents were heterozygotes Indicates that the resistance allele is recessive OR susceptible allele is dominant Can test resistance/susceptibility by spraying with insecticide 	1-4
Total	4

(a) Indicate the order in which the following life forms first evolved: eukaryotic cells, prokaryotic cells, land plants and marine animals. (4 marks)

Description	Marks
First (Oldest): Prokaryotic cells	1
Second: Eukaryotic cells	1
Third: Marine animals	1
Fourth: Land plants	1
Total	4

(b) Distinguish between microevolution and macroevolution. Include a specific example of each in your answer. (4 marks)

Description	Marks
Microevolution is evolution within a population or small scale evolution or changes in the genetic composition of a population (through time)	1
Macroevolution is evolution (at or) above the level of species OR large scale evolution	1
Specific example of microevolution, e.g. evolution of antibiotic/herbicide/insecticide resistance in a species or evolution of small/large/different forms of a species on an island or evolution of breeds of a species or loss of genetic diversity from populations of an endangered species (answer should state type of organism and trait/process & be a clear example of microeveolution).	1
Specific example of macroevolution, e.g. radiation/speciation of Galapagos finches or other lineage or extinction of dinosaurs or other lineage or change in vertebrate limb or other character through time (answer should state type of organism and trait/process & be a clear example of macroeveolution).	1
Total	4

(c) (i) Compare the body condition index for males with the experimentally-shortened feathers with that for the control males. (2 marks)

Description	Marks
Any two of:	
 Body condition declined in both types of males The body condition of the experimental males is higher or the body condition of the control males was lower (Rate of) decline was greater in the control (long-feathered) males or (rate of) decline was less in the males with the experimentally shortened feathers Any accurate data quote from the figure 	1–2
Total	2

(ii) Compare the number of active nests for the males with the experimentallyshortened feathers with that for the control males. (2 marks)

Description	Marks	
-		

The average number of active nests was greater in the control (long-feathered) males or the average number of active nests was less in the males with the experimentally shortened feathers	1
Any accurate data quote from the figure	1
Total	2

(d) Suggest a plausible explanation for the evolution of long tail feathers in the male widowbirds. (5 marks)

Description	Marks
Any five of:	
 (Long tail feathers evolved by) sexual selection Long tail feathers reduce the body condition of the males Therefore long feathers will not be favoured by natural selection Females prefer males with long feathers Therefore males with long feathers are more likely to have a mate or active nest or to breed Therefore the frequency of the alleles for long feathers increased through time Because males with long feathers left more offspring than males with shorter feathers 	1–5
Total	5

(e) Provide a plausible explanation for why this is so.

(3 marks)

Description	Marks
Any three of:	
Gene flow or gene exchange or single population	
Individuals move/migrate between estuaries	
 Individuals breed in the destination estuary 	1–3
This mixes up the genes from the different estuaries or prevents	1-3
(permanent)differences evolving in the different estuaries or makes	
the genetic composition the same	
Total	3

(20 marks)

(a) List **four** distinctly different adaptations of plants to a dry environment. (4 marks)

Description	Marks
Any four of:	
 Small/spiked leaves or reduced number of leaves or ability to roll/reposition leaves or ability drop leaves Store water in leaves/stems/tubers Thick (waxy) cuticle Reduced number of stomata or stomata open at night and close at day (reverse pattern) or stomata in pits Hairy leaves Deep roots or shallow spreading roots 	1–4
Total	4

(b) Some desert mammals do not need to drink water. Explain how they can survive.

(4 marks)

Description	Marks
Any four of:	
 From food Particularly if they feed on plants/animals that store water From stored fat/carbohydrate Metabolism of fat/carbohydrate generates water as well as energy Eat their faeces to regain any water lost in the faeces Any relevant example - camel obtains water from fat stored in hump or pocket mouse obtains water from carbohydrate in seeds or jackrabbit eats faeces to regain lost water or other relevant example 	1–4
Total	4

(c) Which row in the table gives the rectal temperature for the rabbit? Explain your answer. (4 marks)

Description	Marks
(Row) A	1
Any three of:	
 Rabbit is endothermic Maintains constant internal temperature (regardless of temperature of the environment) Temperature in A is relatively constant/stays in a narrow range Temperatures in B and C more variable Body temperature of mammals is around 38 °C Rectal temperature reflects core body temperature 	1–3
Total	4

(d) Rabbits have the ability to control the amount of blood flow to their ears. Explain how this can help them to thermoregulate. (4 marks)

Description	Marks
Any four of:	
Blood flowing from body to ears is relatively warm	
Ear is in close contact with air	
Therefore heat in blood can be lost via the ear	
If air temperature is warm, rabbits increase blood flow to ears	1–4
This will increase heat loss (providing blood is cooler than air)	1-4
Heat is lost by radiation (and by convection if rabbit is moving)	
If air temperature is cold, rabbits decrease blood flow to ears	
• Heat is retained in body of rabbit (rather than lost to the environment)	
Total	4

(e) In many frog species the tadpoles excrete nitrogenous waste as ammonia, whereas the adult frogs excrete urea. Provide a plausible explanation for this. (4 marks)

Description	Marks
Any four of:	
Ammonia is very toxic/urea is less toxic	
Must be excreted quickly or diluted	
This requires a lot of water	
 Tadpoles are aquatic/have access to lots of water 	1–4
 Adult frogs live on land/have less access to water 	
To save water they excrete urea	
• But it takes more energy to make urea/less energy to make ammonia	
Total	4

End of Section Two

Section Three: Extended answer

Unit 3

Question 36

(a) Describe how recombinant DNA technology can be used to genetically modify bacteria to produce chymosin and the advantages of obtaining chymosin for cheesemaking in this way. (10 marks)

Description	Marks
Genetic modification	
Any six of:	
 Isolate the gene (that produces chymosin) from cattle Use restriction enzymes to remove the gene Use same restriction enzyme to cut plasmid/vector Insert gene in plasmid/vector Place plasmid/vector in bacteria Modify culture conditions of bacteria so uptake of plasmid/vector is more likely or transform bacteria Bacterial cells can now produce chymosin Allow bacterial cells to multiply/clone This makes multiple copies chymosin gene or multiple copies of bacteria that can produce chymosin 	1–6
Advantages	
Any four of:	
 Ethical, does not require calves to be killed Inexpensive/easy to produce (now that the technology has been developed) because does not involve rearing/handling/killing calves or only requires the culture of bacteria Easy/Fast to produce large amounts Regular supply, do not need to wait for calves to be killed Less impurities, much easier to purify from microbial cultures than from the stomach of calves Increase yield 	1–4
Total	10

(b) In making conservation plans to maintain viable gene pools, why do biogeography, reproductive behaviour and population dynamics need to be considered? (10 marks)

 Populations (of a species) in different geographical locations will be genetically different Because they evolved in different environments (Therefore) Individuals should not be deliberately moved (by humans) among locations Individuals from different locations may be reproductively incompatible (Mixing genes from different regions) could cause outbreeding depression or reduced fitness Reproductive behaviour Any three of: Behaviour associated with mating or rearing young Reproductive behaviour may change in captivity or outside of natural environment or if directed by humans (e.g. in zoos) or in small area This could mean that only a small number of individuals that reproduce And produce surviving offspring The gene pool would come to reflect only the genetics of these (few) individuals Could result in inbreeding depression or a loss of fitness Could result in inbreeding depression or a loss of fitness Could result in inbreeding depression or a loss of fitness Could result in loss of (gene/alleles for) natural reproductive behaviours Population sizes fluctuate (through space or time) Smallest sizes pose the most risk to gene pool or population will lose genetic diversity when small This happens through genetic drift or random loss of genetic variation Lost diversity is not quickly recovered (even if population numbers increase) (Therefore) conservation planning should be based around smallest population numbers will drop or should consider small size in the past 	Description Marks
 Nature reserves/conservation areas need to be large enough/ have suitable conditions to maintain viable populations of (target) species Small populations lose genetic diversity (and may not be viable) Need connections between reserves or need (wildlife) corridors (or converse, i.e. geographically isolated areas) So populations can exchange genes (or converse, will reduce gene flow) (Exchange) will boost genetic diversity in local populations Populations (of a species) in different geographical locations will be genetically different Because they evolved in different environments (Therefore) Individuals should not be deliberately moved (by humans) among locations Individuals from different locations may be reproductively incompatible (Mixing genes from different regions) could cause outbreeding depression or reduced fitness Reproductive behaviour Any three of: Behaviour associated with mating or rearing young Reproductive behaviour may change in captivity or outside of natural environment or if directed by humans (e.g. in zoos) or in small area This could mean that only a small number of individuals reproduce or this could reduce the number of individuals that reproduce or this could come to reflect only the genetics of these (few) individuals There would high levels of inbreeding Could result in loss of (gene/alleles for) natural reproductive behaviours Population sizes fluctuate (through space or time) Smallest sizes pose the most risk to gene pool or population will lose genetic diversity when small This happens through genetic drift or random loss of genetic variation Lost diversity is not quickly recovered (even if population numbers increase) (Therefore) conservation planning should be based around smallest population size or	
have suitable conditions to maintain viable populations of (target) species Small populations lose genetic diversity (and may not be viable) Need connections between reserves or need (wildlife) corridors (or converse, i.e. geographically isolated areas) So populations can exchange genes (or converse, will reduce gene flow) (Exchange) will boost genetic diversity in local populations Populations (of a species) in different geographical locations will be genetically different Because they evolved in different environments (Therefore) Individuals should not be deliberately moved (by humans) among locations Individuals from different locations may be reproductively incompatible (Mixing genes from different regions) could cause outbreeding depression or reduced fitness Reproductive behaviour Any three of: Behaviour associated with mating or rearing young Reproductive behaviour may change in captivity or outside of natural environment or if directed by humans (e.g. in zoos) or in small area This could mean that only a small number of individuals that reproduce or this could come to reflect only the genetics of these (few) individuals There would high levels of inbreeding Could result in inbreeding depression or a loss of fitness Could result in loss of (gene/alleles for) natural reproductive behaviours Population dynamics Any three of: About how and why populations change size Population sizes fluctuate (through space or time) Smallest sizes pose the most risk to gene pool or population will lose genetic diversity when small This happens through genetic drift or random loss of genetic variation Lost diversity is not quickly recovered (even if population numbers increase) (Therefore) conservation planning should be based around smallest population size or should allow for times when population numbers will drop or should consider small size in the past	
Reproductive behaviour Any three of: • Behaviour associated with mating or rearing young • Reproductive behaviour may change in captivity or outside of natural environment or if directed by humans (e.g. in zoos) or in small area • This could mean that only a small number of individuals reproduce or this could reduce the number of individuals that reproduce or this could reduce the number of individuals that reproduce • And produce surviving offspring 1- • The gene pool would come to reflect only the genetics of these (few) individuals 1- • There would high levels of inbreeding 0- • Could result in inbreeding depression or a loss of fitness 0- • Could result in inbreeding depression or a loss of fitness 0- • Could result in loss of (gene/alleles for) natural reproductive behaviours 0- Population dynamics Any three of: 0- • About how and why populations change size 0- • Population sizes fluctuate (through space or time) 0- • Smallest sizes pose the most risk to gene pool or population will lose genetic diversity when small 1- • This happens through genetic drift or random loss of genetic variation 1- • Lost diversity is not quickly recovered (even if population numbers increase) 1 • (Therefore) conservation planning should b	suitable conditions to maintain viable populations of (target) es I populations lose genetic diversity (and may not be viable) connections between reserves or need (wildlife) corridors poverse, i.e. geographically isolated areas) opulations can exchange genes (or converse, will reduce flow) nange) will boost genetic diversity in local populations lations (of a species) in different geographical locations will enetically different use they evolved in different environments efore) Individuals should not be deliberately moved (by ans) among locations luals from different locations may be reproductively npatible g genes from different regions) could cause outbreeding
Any three of: Behaviour associated with mating or rearing young • Behaviour associated with mating or rearing young • Reproductive behaviour may change in captivity or outside of natural environment or if directed by humans (e.g. in zoos) or in small area • This could mean that only a small number of individuals reproduce or this could reduce the number of individuals that reproduce • And produce surviving offspring 1- • The gene pool would come to reflect only the genetics of these (few) individuals 1- • There would high levels of inbreeding Could result in inbreeding depression or a loss of fitness • Could result in loss of (gene/alleles for) natural reproductive behaviours Population dynamics Any three of: About how and why populations change size • Population sizes fluctuate (through space or time) Smallest sizes pose the most risk to gene pool or population will lose genetic diversity when small • This happens through genetic drift or random loss of genetic variation 1 • Chrefore) conservation planning should be based around smallest population size or should allow for times when population numbers will drop or should consider small size in the past 1	
 Behaviour associated with mating or rearing young Reproductive behaviour may change in captivity or outside of natural environment or if directed by humans (e.g. in zoos) or in small area This could mean that only a small number of individuals reproduce or this could reduce the number of individuals that reproduce And produce surviving offspring The gene pool would come to reflect only the genetics of these (few) individuals There would high levels of inbreeding Could result in inbreeding depression or a loss of fitness Could result in loss of (gene/alleles for) natural reproductive behaviours Population dynamics Any three of: About how and why populations change size Population sizes fluctuate (through space or time) Smallest sizes pose the most risk to gene pool or population will lose genetic diversity when small This happens through genetic drift or random loss of genetic variation Lost diversity is not quickly recovered (even if population numbers increase) (Therefore) conservation planning should be based around smallest population size or should allow for times when population numbers will drop or should consider small size in the past 	
 Reproductive behaviour may change in captivity or outside of natural environment or if directed by humans (e.g. in zoos) or in small area This could mean that only a small number of individuals reproduce or this could reduce the number of individuals that reproduce or this could reduce the number of individuals that reproduce or this could come to reflect only the genetics of these (few) individuals The gene pool would come to reflect only the genetics of these (few) individuals There would high levels of inbreeding Could result in inbreeding depression or a loss of fitness Could result in loss of (gene/alleles for) natural reproductive behaviours Population dynamics Any three of: About how and why populations change size Population sizes fluctuate (through space or time) Smallest sizes pose the most risk to gene pool or population will lose genetic diversity when small This happens through genetic drift or random loss of genetic variation Lost diversity is not quickly recovered (even if population numbers increase) (Therefore) conservation planning should be based around smallest population size or should allow for times when population numbers will drop or should consider small size in the past 	
 Any three of: About how and why populations change size Population sizes fluctuate (through space or time) Smallest sizes pose the most risk to gene pool or population will lose genetic diversity when small This happens through genetic drift or random loss of genetic variation Lost diversity is not quickly recovered (even if population numbers increase) (Therefore) conservation planning should be based around smallest population size or should allow for times when population numbers will drop or should consider small size in the past 	boductive behaviour may change in captivity or outside of al environment or if directed by humans (e.g. in zoos) or in area could mean that only a small number of individuals duce or this could reduce the number of individuals that duce broduce surviving offspring gene pool would come to reflect only the genetics of these individuals e would high levels of inbreeding d result in inbreeding depression or a loss of fitness d result in loss of (gene/alleles for) natural reproductive viours
 About how and why populations change size Population sizes fluctuate (through space or time) Smallest sizes pose the most risk to gene pool or population will lose genetic diversity when small This happens through genetic drift or random loss of genetic variation Lost diversity is not quickly recovered (even if population numbers increase) (Therefore) conservation planning should be based around smallest population size or should allow for times when population numbers will drop or should consider small size in the past 	
 Population sizes fluctuate (through space or time) Smallest sizes pose the most risk to gene pool or population will lose genetic diversity when small This happens through genetic drift or random loss of genetic variation Lost diversity is not quickly recovered (even if population numbers increase) (Therefore) conservation planning should be based around smallest population size or should allow for times when population numbers will drop or should consider small size in the past 	
drop Total	lation sizes fluctuate (through space or time) lest sizes pose the most risk to gene pool or population will genetic diversity when small happens through genetic drift or random loss of genetic tion diversity is not quickly recovered (even if population numbers ase) refore) conservation planning should be based around est population size or should allow for times when

(a) Describe the process of allopatric speciation.

Description Marks Any ten of: (Large ancestral) population is subdivided (into subpopulations) (Subdivided by) a physical barrier or a mountain range or desert or river Physical barrier prevents individuals moving (between subpopulations) (Therefore) there is no gene flow between (sub)populations (Sub)populations evolve independently or gene flow can no longer smooth out differences or (sub)populations are isolated (Sub)populations are in different environments or face different selection pressure Therefore (natural) selection will favour different traits in the different (sub)population/environments Will result in differences in the genetic composition or in allele frequencies (of two (sub)populations) 1 - 10(Sub)populations will be adapted to different environments Genetic drift may cause (random) differences (in genetic) composition or allele frequencies Mutation may cause (random) differences (in genetic) composition or allele frequencies Genetic differences (between (sub)populations) increase through time/over many generations Eventually (sub)populations are unable to interbreeding/exchange genes or are reproductively isolated Because individuals are no longer genetically compatible (Once unable to interbreeding/exchange genes or reproductively isolated) (sub)populations are regarded as separate species (Daughter) species evolved in different locations Total 10

(10 marks)

(20 marks)

(b) Explain how fossils, comparative anatomy, comparative embryology and comparative genomics can each provide evidence for the theory of evolution. (10 marks)

Description	Marks
Fossils	
 Any three of: Show past life/extinct species or show traces of past life/extinct species Can be dated or assigned to a time period Can follow changes in a trait/organisms/species over time Show transitional/intermediate/ancestral forms (which show how one group evolved from another) Specific example, Archaeopteryx/forms that show features of both birds and dinosaurs Comparative anatomy Any three of: Either Homologous structures Structures developed from the same plan Different functions Specific example, e.g. pentadactyl limb of vertebrates or Convergent evolution or analogous structures Same function 	1–3
 Evolved independently Specific example, e.g. wing of bat and insects or Vestigial structures Structure that is no longer functional/reduced in size Can be traced to functional structure in other organisms Shows evidence of relationships among organisms Specific example, e.g. appendix in humans 	
Any two of:	
 (Embryos) show features that are not present/obvious in adults These features can show relationships among organisms or ancestry of organisms Specific example, e.g. embryo of whales have limb buds 	1–2
Comparative genomics	
Any two of:	
Either	
 Large amounts of genetic/sequence data are compared The closer the sequence (DNA/RNA/Amino acid) the more closely related the organisms. Build phylogenetic trees Determine evolutionary relationships (from phylogenetic trees) or Genetic code is (almost) universal 	1–2
Implies that all organisms have descended from a common ancestor	
Total	10

Unit 4

Choose either Question 38 or Question 39.

Indicate the question you will answer by ticking the box next to the question. Write your answer on the pages provided.

Question 38

(20 marks)

(a) Describe in general terms how an organism maintains its internal environment within tolerance limits. (10 marks)

Description	Marks
Any ten of:	
 Homeostasis Internal environment remains (relatively) stable/constant Despite changes in environment Achieved via negative feedback The response reverses the stimulus/the change in the environment (Negative feedback is a type of) stimulus-response model Change in the (internal or external) environment (Change is called) a stimulus Receptor detects stimulus/change Receptor produces a signal (may be chemical or electrical) The signal is sent to a processing centre or brain or central nervous system or modulator Processing centre or brain or central nervous system or modulator coordinates a response A message is sent to effector (usually a muscle or gland in animals) Effector brings about a response Specific example (e.g. glucose levels in animals, water balance in a plant) 	1–10
Total	10

(b) Explain how the spread of an infectious disease is influenced by the mode of transmission of the pathogen. Consider **three** distinctly different modes of transmission in your answer. (10 marks)

Description	Marks
Different pathogens have different modes of transmission or	
Rate of spread of a disease is variable/not constant/not uniform (and	1
varies with mode of transmission)	
Any 3 of:	
Direct contact (e.g. through body fluids)	
Some pathogens/diseases are spread by direct host contact/through	
body fluids/sexual transmission	
 Spread is influenced by behaviour of hosts 	1–3
Will spread faster when behaviour that spreads the disease is more	
common or will spread slower if behaviour is modified/stopped	
Close contact (e.g. airborne, contact transmission)	
Some pathogens/diseases spread by close host contact/airborne	
droplets/touching contaminated surfaces	
Spread is influenced by host density and host behaviour	
Will spread faster when host density/abundance is high because	
potential hosts come into close contact more often or will spread	
slower when host density/abundance is low because potential hosts	1–3
come into close contact less often	
• Will spread faster with unhygienic practices or will spread slower with	
hygienic practices	
• (Pathogen/Disease) can (quickly) spread to new areas if infected hosts	
move about	
Vectors	
 Some pathogens/diseases are spread by vectors 	
 Spread is influenced by (characteristics of) vector 	
• (Pathogen/disease) will spread faster if density/abundance of vector is	
high/because vectors hosts will come into contact with hosts more	1–3
often	
• But (disease/pathogen) can only spread in areas/at times where vector	
is present or cannot spread in areas/at times where vector is absent	
Soil/water/food transfer	
 Some pathogens/diseases are spread by water or soil or food 	
• Infected people/Pathogen comes into contact with water or soil or food	
 Use water to disperse from one area to another or spread when 	
(infected) soil is transported from area to another or	1–3
Spread will depend on amount of water/flow or spread will depend on	
where (infected) soil is transported to/from or will spread when food is	
not handled properly	
Total	10

(20 marks)

(a) Describe the life cycle of the pathogen that causes chytridiomycosis (amphibian chytrid fungus disease) and discuss the impact that the pathogen has on the host and the mode of transmission of the pathogen. (10 marks)

Description		Marks
Life Cycle		
Any five of:		
 Fungus/Thallus produces (zoo)spores Spores are produced by asexual reproduction (Zoo)spores are released into water (or reinfect host) (Zoo)spores swim Encounter/invade host Invade skin cell/surface layer of skin Develop into a thallus Thallus matures 		1–5
Impact	L	
Any three of:		
 Nervous system affects frog's behaviour/sit out in sun sluggish, no appetite has its legs spread slightly away from itself Part of frog's skin that has keratin Causes skin cells to shed/thicken/harden Disrupts function of skin cells Frogs use skin to exchange gases and water and salts Leads to osmotic problems Frogs die 		1–3
Mode of transmission		
 Any two of: Contact with contaminated water/water containing zoospores Direct contact between frogs Humans or other animals (e.g. ducks) (may spread over land) Transmission outside of water is not well known 		1–2
	Total	10

(b) Explain the problems that a bony fish experiences in maintaining water and salt balance in seawater and explain how the fish solves these problems. (10 marks)

Description	Marks
Problems	
Any four of:	
 The salt concentration of blood/body fluids is lower than in seawater or the salt concentration in seawater is higher than in blood/body fluids Fish blood/body fluids are hypotonic or seawater is hypertonic Therefore the fish loses water to the seawater Because the water flows from low salt concentration to high salt concentration By osmosis 	1–4
Solutions	
Any six of:	
OsmoregulationThe fish drinks seawater (to replace lost water)	1–6

•	But takes in salt as well	
•	Excess salt is removed	
•	Removal is active (transport/process)	
•	Done by (secretory) cells in the gills	
•	Small volume of urine to help conserve water	
٠	Kidneys have few/small glomeruli (to facilitate small volume of urine)	
	Total	10

This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the *Copyright Act 1968* or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the *Copyright Act 1968* or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons <u>Attribution 4.0 International (CC BY)</u> licence.

Published by the School Curriculum and Standards Authority of Western Australia 303 Sevenoaks Street CANNINGTON WA 6107