
Princess & Dragon – Version 2

By Michael Hoyle
under the direction of Professor Susan Rodger

Duke University
July 2012

Part 2: Using Methods

Overview

• The main topic of this tutorial is methods.

• Methods tell objects what to do.

• There are two types of methods in Alice, object-level
methods, and world level methods.

• Object-level methods only tell a single object what
to do.

• World-level methods tell more than one object what
to do.

Built-in methods

You’ve already seen and used some methods in your set-up, such
as roll (for Cinderella’s arms). You can also use methods in code.
Click on Dragon in the Object tree and then select its methods
tab.

As you can see, there’s a bunch of things
we can already tell it to do, like move,
turn, say, and others.

These are object-level methods, because
they only tell the dragon what to do.

Adding to world.my first method

Find this area in the lower-right portion of Alice. This is the tab with
the contents of the method “world.my first method”. This is a world-
level method, and we can drag and drop other methods in here to
make our animation.

Object who
owns method Method name

Explaining world.my first method

Find the Events area in the upper-right portion of your
screen. Here you’ll find events, which tell your animation
when to use methods. There should be one event there
(shown above), which is there by default.

It means that when you press , whatever methods
are in “world.my first method” will happen. If you press Play
now, nothing will happen, because “world.my first method”
is empty. Let’s put something in it!

Adding to world.my first method
Make sure you still have dragon selected, and his methods tab open

• Scroll down to find ‘dragon turn to face’. Click it and drag-and-
drop it over into the empty yellow space in world.my first
method.

• When you drop it, a menu will pop up asking you to select a
“target”. We want him to turn to face Cinderella, so select
Cinderella, then the entire Cinderella.

Play your world!

Find the button in the upper-left area of Alice. Press it
and watch your animation.

You should see a short and simple animation where your dragon
turns to face Cinderella. He may turn a lot or a little, depending
on how much he was facing her in the set-up.

Creating methods
With a dragon coming at her, Cinderella should be scared! The
next part of our animation will be for Cinderella to jump up and
down and cry for help.

Click on cinderella and go to
her methods tab. There is no
method for jumping up and
calling for help, so we’re
going to have to create one
for her.

Creating methods

Click create new method, and a
box will pop up for you to type in
a name for the method. Call the
method “cry for help”, and click
OK.

Tabs
A new tab should open next to “world.my first method” that
shows the method you just created. Tabs exist so you can
easily edit multiple methods at once. To switch which method
you’re editing, just click on that tab.

Creating cinderella.cry for help

As we’ve already seen in “world.my first method”, you create
methods by putting together built-in methods, like move and
roll. Here are the steps we want Cinderella to follow in this
method:

1. Cinderella move up 1 meter (jump)
2. Cinderella move down 1 meter (land)
3. Cinderella say “Help!”

Let’s create ‘cinderella.cry for help’ by dragging in methods to
do these things. Remember that often when you drag in a
method it will give you some options, like what direction and
distance you want Cinderella to move, or what you want
Cinderella to say.

Creating cinderella.cry for help

Click Cinderella and go to her
methods tab. Drag in a “cinderella
move” and select up, then 1
meter. Do the same thing again,
this time selecting down for the
direction

Finally drag in a
“cinderella say” and
select ‘other…’. Type in
“Help” and select OK.

Final code for ‘cinderella.cry for help’

Calling methods we created

Now you’re done creating the method, but if you press play,
Cinderella won’t jump or cry for help. That’s because right now,
only ‘world.my first method’ runs when the world starts. We
need to go to the ‘world.my first method’ tab and tell Cinderella
to cry for help after the dragon turns to face her.

Drag-and-drop in the ‘cry for help’ method just like any other method.
NOTE: Make sure you click the world.my first method tab!

Getting the dragon to flap his wings

Now let’s write another method to make the dragon flap his
wings. We’re going to have to use his sub-parts and tell them to
follow these steps:

1. Flap left wing down
2. Flap right wing down
3. Flap left wing up
4. Flap right wing up

By default, Alice does commands in order. For us to get Alice to
do some methods at the same time, we’ll need to use a Do
Together block.

 Do at the same time

 Do at the same time

Getting the dragon to flap his wings
First, we need to create the method. Select dragon, go to
methods tab, and select ‘create new method’

Name it “flap wings”

We know that we will want to do two methods together (we
want both wings to flap at the same time). Find ‘Do together’
near the bottom of Alice and drag it up into the new method.

Getting the dragon to flap his wings

Remember what we want to do together is flap the left wing down,
and flap the right wing down.

Press the ‘+’ next to dragon to see his
subparts. Click ‘left wing’. Notice that
left wing has a methods tab of its
own, meaning you can call methods
on just that wing.

Getting the dragon to flap his wings

Drag-and-drop ‘left wing roll’ into your Do together. Select ‘left’
as the direction, and ‘other’ as the amount. When a calculator
pops up for you to enter an amount, type .15

The default duration of these methods in your animation is 1
second. That’s a little slow for just half of a wing flap, so let’s
make it happen faster. Click the small arrow next to ‘more…’
and select duration, and for amount select 0.5 seconds.

Getting the dragon to flap his wings

Follow the same steps outlined in the past two slides to roll the
right wing right 0.15 revolutions. Remember to select the right
wing in the object tree, and then use the roll method in its
methods tab.

Your code should look like the above when you’re done.
Remember that this code is only for flapping the wings down,
so we’ll need another Do together to make them flap up.

Getting the dragon to flap his wings

Instead of following all of the same basic steps as before to flap
the wings back up, we’ll make use of the “make copy” feature.
Right click on any purple portion of the “Do Together” to get a
drop-down options menu. Select ‘make copy’, and you should
see a copy of the whole block appear.

In order to make the wings flap back up, we need to do the
exact opposite as we just did. To do this, find arrow next to left
and click it to
change it to right.
Do the same on the
other wing by
changing right to
left.

Your code should look like the above when you complete this
step. Pay attention to which wing moves which direction.

Incorporating dragon.flap wings
Click the world.my first method tab to return to the main script for
our animation. Now let’s add to it so that the dragon flies a little
towards the princess. The dragon will use these steps:

1. Move up 1 meter
2. Move forward 2 meters Do together
3. Flap his wings

We want all of these things
to happen together, so our
first step should be to drag
in a ‘Do Together’ block.
The rest of our code for this
part will be inside the block.

Incorporating dragon.flap wings

Select dragon in the object tree, and drag in a move method.
Select up for the direction, and 1 meter as the amount. We’ll
want him to fly a little slower, so click ‘more…’ and select
duration = 2 seconds.

Follow the same steps to have him move forward 2 meters.
Remember that if an amount you want isn’t an option, always
select ‘other…’ to use a custom entry.

Finally, drag in your newly made flap wings method.

Your Do together should look like this at this point

Loops

Play your world. It should look like the dragon is flying towards
Cinderella.

If your dragons wings do not flap correctly, look back to your flap wings method to make

sure it is correct.

There is a problem though – his wings only flap for half of the
movement. That’s because your method ‘flap wings’ only takes a
second, while the movements take 2.

To solve this problem, we’ll put the flap wings method in a loop. A
loop tells Alice to do the same method(s) some time in a row.

Our wing flap only takes one second when it should take two, so
we want to loop it twice.

Loops

From the bottom row,
drag in a Loop into your
Do together. Select 2
times as the amount.

Now move your ‘dragon.flap wings’ method into the loop

Your code should look like
this. Play your world to
test it out!

asSeenBy
Our next step will be to make the dragon fly in a circle around
Cinderella. To do this, we will use the tool asSeenBy.

asSeenBy is used with the turn method to have one object turn
around another.

Go to dragon’s methods tab and drag in a turn, select left, and
1 full revolution.

asSeenBy

If we left this code as it was, the dragon would just turn around
in place, but we want him to turn around Cinderella. To do this
we use asSeenBy

Click ‘more…’ and select asSeenBy. When asked for a target
select cinderella > the entire cinderella. After, your code should
look like this:

Play your world to see your dragon circle around cinderella

asSeenBy
You may have noticed that the dragon’s turn around her looks a
little unnatural because he is facing her the whole time. We can
fix this by having him turn to the right ¼ revolution before his
asSeenBy turn. Then, he will look like he’s flying around her.

Make sure you drop in the new turn method before the
asSeenBy method! When dragging over a method, a green line
will appear to show you where it will go if you drop it.

Re-using methods
One of the big advantages of creating methods in your Alice
world is that you can re-use them whenever you want.

Go to cinderella’s methods tab and drag in another ‘cry for
help’. She will jump into the air and say “Help!” again.

Saving the princess

It’s about time for our valiant knight to save the damsel in
distress! Go to knight’s methods tab and drag in a say method.
Select “other…” and type in “Stop!”

Remember that even if an object is out of the camera view it can still do
methods. To the viewer (who doesn’t know there is a knight off-screen)
someone just yelled out “Stop!”, but they don’t know who it is yet.

Changing the camera view

Now we’ve had the knight say “Stop!” from off-screen, now lets
move our camera to show our viewer who said it. We can use
the dummy object ‘knight view’ that we created in part 1.
Whenever you want to set the camera view to a dummy you
created, always use the set point of view to method.

Click camera and go to its methods tab. Scroll down to find set
point of view to, and drag it in below your knight say method.
When it asks you for a target, select camera views > knight
view.

Getting the dragon’s attention

Here is the script for what we want to happen next:

1. Dragon turn to face knight
2. Knight turn to face dragon
3. Knight say “Don’t hurt her!”

These are all concepts we’ve used so far, see if you can figure
out the code for this part!

The correct code is on the next slide.

Do together

Getting the dragon’s attention

The correct code is:

If you had trouble,
remember that Do Together
can be found along the
bottom of Alice, and to
access an object’s methods,
just click it in the object tree
and find its methods tab.

Now play your world. We’ve done a lot of animating! Next,
we’re going to write a new world-level method for the
knight to vanquish the dragon.

Creating a new world method

Now we want to create a new method for the knight to jump off
his horse and kick the dragon. All the methods we’ve written so
far have been object methods, which only tell one object what
to do. This method will involve the knight, dragon, and camera,
so it should be a world method.

Click world, and go to its
methods tab. You will already
see ‘my first method’. Click
create new method, and call
this new method “kick
dragon”. A new empty tab
should open up in your
method editor.

World.kick dragon

Let’s start this method by having the knight jump off his horse
to move to the dragon. For this, we’ll use the move to method.

Move to moves an object to another so that their centers are
in the same place. If we say “knight move to dragon,” the
objects will look like they’re inside each other. Instead we can
tell the knight to move to the dragon’s left front paw.

Find the knight’s methods tab and drag in a move to. For the target,
select dragon > left arm > left forearm > left paw > the entire left paw.

World.kick dragon

Now the knight is where the dragon is, we can have all of our
characters in frame if we go back to our original view.

Go to camera’s methods tab and find the set point of view to
method. Drag it into the method we’re working on and select as
your target camera views > original view.

World.kick dragon
At this point your knight will be moved to the dragon, and facing
him. Because the dragon was behind the knight, your knight will
be facing away from the camera. Turn him to the side a little bit
so that we’ll be able to see his kick well in the animation.
Choose knight > turn > left > ¼ revolution.

This is only a small turn so it shouldn’t take a full second (which
is the default). Click ‘more…’ to change the duration to .25
seconds.

World.kick dragon

Now it’s time for the kick! For a kick we only need the knight’s leg
to move, so select his rightLeg subpart in the object tree and have
it turn > backwards > ¼ revolution.

This also should happen quickly, so change
the duration to .25 seconds.

If you forget how to change the duration, check the
previous slide.

His kick should send the dragon flying off-screen, so for your next
method, select dragon, and choose move > up > 10 meters.

World.kick dragon
Now we need the knight to put his leg back down from the kick,
and then fall to the ground. Right-click the “knight.rightLeg turn
backwards method” and select ‘make copy’. A copy will appear
below that method. Click-and-drag the copy to come after the
“dragon move up” method. Change ‘backward’ to ‘forward’. This
should make his leg return to normal.

Above is what your code should look like for ‘kick dragon’ so far.

Finishing World.kick dragon - functions

We are almost done! The last thing we need to do is make the
knight fall back to the ground, but there is no ‘move to ground’
method. The issue is that we don’t know how high above the
ground he is, so we don’t know how far down to move him. This is
where functions come in handy. Click ‘knight’ and go to his
functions tab.

You can see there are already a lot of
functions you can use, and you can even
create new ones.

Functions give us information about our
world, such as how big something is, or how
far apart things are, or what color something
is.

A function whose value is a number can be
used in place of any number in our code.

Finishing World.kick dragon - functions

To get the knight to move to the ground we know we need to
have him move down. Go ahead and go back to his methods tab
and drag in a move > down > 1 meter.

One meter isn’t right, though. We need to use a function to tell
us what the knight’s distance above the ground is. Go back to
knight’s functions tab and find distance above. Click this, and
you will see yellow boxes appear in your code where you are
allowed to drop it. Because this function tells us a number, we
can drop it anywhere where we use a number. Drop it over ‘1
meter’ in the method we just put in, and then select “ground”
from the dropdown menu.

World.kick dragon – final code

If your code doesn’t look like the code above, go back and make
sure you did it right!

Putting it all together

Now you have your ‘kick dragon’ method made, but your code
doesn’t use it yet, so it won’t show up in your animation! You
need to tell Alice when to use it. Remember that the main script
for your animation is in world.my first method. Select that tab,
and then select ‘world’ in your object tree.

Drag over your kick dragon to the bottom of your code.

World.my first method – Final Code

Part 2 Complete!

Congratulations, you finished part 2! In part 3, you’ll learn
about billboards, 3D text, events, sounds, and properties.

